scholarly journals Mass Spectroscopic Analysis, MNDO Quantum Chemical Studies and Antifungal Activity of Essential and Recovered Oil Constituents of Lemon-Scented Gum against Three Common Molds

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 275 ◽  
Author(s):  
Said I. Behiry ◽  
Ramadan A. Nasser ◽  
Mamoun S.M. Abd El-Kareem ◽  
Hayssam M. Ali ◽  
Mohamed Z.M. Salem

The present study described the possibility of using wood-treated oil-fungicide of lemon-scented gum (Corymbia citriodora) from newly emerged leaves and unripened fruits against the infestation of Fusarium culmorum, Rhizoctonia solani and Penicillium chrysogenum. Air-dried wood samples of Melia azedarach were treated with the extracted oils from leaves and unripened fruits from C. citriodora. The main chemical constituents identified in the essential oil (EO) from leaves were citronellal (55.31%), citronellol (21.03%) and isopulegol (10.79%), while in unripened fruits were α-pinene (17.86%), eudesmol (13.9%), limonene (9.19%), γ-terpinen (8.21%), and guaiol (7.88%). For recovered oils (ROs), the major components from leaves were D-limonene (70.23%), γ-terpinene (13.58%), β-pinene (2.40%) and isopregol (2.23%), while, 4-terpineol (21.35%), cis-β-terpineol, (19.33%), D-limonene (14.75%), and γ-terpinene (7.42%) represented the main components in fruits. EOs from leaves and fruits at the amounts of 100, 50 and 25 µL showed the highest inhibition percentage (IP) of 100% against F. culmorum and P. chrysogenum compared to control treatment, while at the amounts of 100, and 50 µL showed 100% IP of R. solani. Wood treated with ROs from leaves and fruits showed IPs of 96.66% and 93.33%, respectively, against the growth of R. solani. The mass spectra of the main components of C. citriodora leaves and fruits’ EOs have been recorded in electron ionization mode at 70 eV and fragmentation has been reported and discussed. On the other hand, different quantum parameters such as the heat of formation, ionization energy total energy, binding energy, electronic energy and dipole moment using the modified neglect of diatomic overlap (MNDO) semi-empirical method have been calculated.

2018 ◽  
Vol 15 (1) ◽  
pp. 21-33
Author(s):  
Ying Wei ◽  
Yongqiao Liu ◽  
Yifan Hele ◽  
Weiwei Sun ◽  
Yang Wang ◽  
...  

Background: Gentianella acuta (Michx.) Hulten is an important type of medicinal plant found in several Chinese provinces. It has been widely used in folk medicine to treat various illnesses. However, there is not enough detailed information about the chemical constituents of this plant or methods for their content determination. Objective: The focus of this work is the isolation and characterization of the major chemical constituents of Gentianella acuta, and developing an analytical method for their determination. Methods: The components of Gentianella acuta were isolated using (1) ethanol extraction and adsorption on macroporous resin. (2) and ethyl acetate extraction and high speed countercurrent chromatography. A HPLC-DAD method was developed using a C18 column and water-acetonitrile as the mobile phase. Based on compound polarities, both isocratic and gradient elution methods were developed. Results: A total of 29 compounds were isolated from this plant, of which 17 compounds were isolated from this genus for the first time. The main components in this plant were found to be xanthones. The HPLC-DAD method was developed and validated for their determination, and found to show good sensitivity and reliability. Conclusion: The results of this work add to the limited body of work available on this important medicinal plant. The findings will be useful for further investigation and development of Gentianella acuta for its valuable medicinal properties.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Félicien Mushagalusa Kasali ◽  
Jonans Tusiimire ◽  
Justin Ntokamunda Kadima ◽  
Amon Ganafa Agaba

Abstract Background The Chenopodium genus is a plant family widely spread worldwide that includes various plant species reputed to possess several medicinal virtues in folk medicines. Chenopodium ambrosioides L. is among the most used plants in traditional medicines worldwide. This review aimed to highlight ethnomedicinal uses, phytochemical status, and pharmacological properties of C. ambrosioides L. Main body of the abstract The analysis of relevant data highlights various ethnomedicinal uses against human and veterinary diseases in forty countries. Most indications consisted of gastrointestinal tract dysfunctioning troubles and worms parasitemia. Around 330 chemical compounds have been identified in different plant parts, especially in its essential oil fractions (59.84%). However, only a few compounds—mainly monoterpenes and glycosides—have been isolated and characterized. Experimental pharmacological studies validated a large scale of significant health benefits. It appeared that many monoterpenes are antioxidant, insecticidal, trypanocidal, analgesic, antifungal, anti-inflammatory, anti-arthritic, acaricidal, amoebicidal, anthelmintic, anticancer, antibacterial, antidiabetic, antidiarrheal, antifertility, antifungal, anti-leishmanial, antimalarial, antipyretic, antisickling, antischistosomal, antiulcer, anxiolytic, immunomodulatory, molluscicidal, and vasorelaxant agents. Short conclusion Thus, the Chenopodium ambrosioides species necessitates further chemical studies to isolate and characterize new bioactive secondary metabolites and pharmacological investigations to precise the mechanisms of action before clinical trials.


1964 ◽  
Vol 84 (9) ◽  
pp. 894-895 ◽  
Author(s):  
Masakazu Aritomi ◽  
Kuniko Miyazaki ◽  
Tatsuji Mazaki

2020 ◽  
Vol 33 (01) ◽  
pp. 94-108
Author(s):  
Mina Zakeri ◽  
Majid Monajjemi ◽  
Ali Ebrahimi

In this article, we discussed about four antihistamine drug called promethazine, loratadine, cetirizine and buclizine. Promethazine in this list is the only one in first generation antihistamine classification with CNS sedation effect and the other three belongs to second generation antihistamine group which are non-sedation and used to treat in many different anti-allergenic fields. In the following we optimized potential, kinetic and total energy of these molecules at body temperature (310 k˚) and environment temperature (298 k ˚) using Mont Carlo method in Amber force field in 500 ns. The quantum mechanics calculations and molecular structure of these molecules investigated using B3LYP level of theory with 6-31 G (d) as a basis set. Theoretical computations were performed to study thermodynamic parameters and frequency analysis. Electronic, thermal, zero point and gibs free energy and enthalpy were estimated in frequency analysis. Semi empirical computations were summarized to pm3 method and different energy parameters (total energy, Binding Energy, Isolated Atomic Energy, Electronic Energy, Core–Core Interaction and Heat of Formation.


2020 ◽  
Vol 36 (1) ◽  
Author(s):  
Charles Oliveira da Silva ◽  
Henrique Trevisan ◽  
Thiago Sampaio de Souza ◽  
Acacio Geraldo de Carvalho

Scolytinae is a beetle group belonging to Order Coleoptera; these insects play an essential role in wood degradation in forest ecosystems, since they build galleries that enable substrate colonization by other saprophytic organisms, as well as nutrient cycling. Thus, the aim of the current study was to evaluate the occurrence of Scolytinae in the wood of 5 tree species exposed to mangrove environment, as well as to simultaneously survey Scolytinae specimens captured in ethanol-baited impact traps placed in the same environment. The study was carried out in a mangrove area located in Santa Cruz neighborhood - RJ. Five freshly-harvested Clitoria fairchildiana, Rhyzophora mangle, Corymbia citriodora, Melia azedarach and Eucalyptus pellita wood logs (1 m long and 5-10 cm diameter) were arranged perpendicular to the ground (1 m above it) and spaced 30 cm away from each other. Five impact traps were set up 50 m away from each other, 1.3 m above the ground. Insects were collected for 5 months. One hundred and thirty (130) Scolytinae individuals (14 species in 2 genera) were recorded in the wood logs; the relative frequency (Fr) of the species comprised Xyleborus affinis (33.9%) and Hypothenemus sp.4 (17.7%), which represented 51.6% of the total number of captured individuals. Hypothenemus sp.6 specimens were not collected in ethanol-baited traps, but the wood of C. fairchildiana. E. pellita did not show insect infestation. The traps captured 798 individuals (24 species belonging to 8 genera); the frequency of X. affinis (25.3%) and Hypothenemus eruditus (14.5%) represented 39.8% of the total number of captured insects.  


Plant Disease ◽  
2003 ◽  
Vol 87 (5) ◽  
pp. 601-601 ◽  
Author(s):  
S. T. Koike ◽  
T. R. Gordon ◽  
B. J. Aegerter

In 1999 and 2000, greenhouse-grown leek (Allium porrum) transplants produced in coastal California (Monterey County) developed a root and basal rot. Affected roots were initially gray and water soaked in appearance and later became pink, soft, and rotted. Basal plates were also affected, becoming water soaked and rotted. Severely affected transplants grew poorly and had chlorotic older leaves; many of these plants collapsed. Disease incidence varied greatly, though some transplant plantings had more than 50% disease. Similar symptoms were found in commercial, field-planted leek crops in the same region. The problem caused significant economic loss to transplant producers because of the loss of plants and the reduction in quality of surviving infected plants. Isolations from transplant and field samples consistently recovered a Fusarium species from both root and basal plate tissues. Single-spore subcultures were grown on carnation leaf agar and incubated under fluorescent light. All isolates produced abundant macroconidia that were stout, thick walled, and had prominent septa. Foot cells were indistinct to slightly notched. Conidiophores were monophialidic. Microconidia were absent and chlamydospores were present. Colonies on potato dextrose agar produced abundant, dense, white, aerial mycelium. The undersurface of these cultures was carmine red. Based on these features, all isolates were identified as Fusarium culmorum. To confirm the identification, a partial sequence (645 bp) of the translation elongation factor (EF-1α) was obtained for one isolate using primers EF-1 and EF-2 (2). The EF-1α sequence from the leek isolate was identical to that of two F. culmorum isolates in Genbank (Accession Nos. AF212462 and AF212463). The next closest match was F. cerealis, which differed from the leek isolate at six nucleotide positions. To test pathogenicity of the leek isolates of F. culmorum, we prepare inocula of four isolates from transplants and three isolates from field plants. A conidial suspension (1 × 105 conidia/ml) of each isolate was applied to the roots of 3-month-old potted leek (cvs. Autumn Giant, Blauwgroene, and Cisco). For the control treatment, leek plants were treated with water. All plants were maintained in a greenhouse at 25°C. After 1 month, inoculated plants showed foliar and root symptoms similar to those observed on the original samples. F. culmorum was reisolated from these symptomatic plants. Control plants did not develop symptoms. Using the same procedures, the seven isolates were inoculated onto other Allium species, but did not cause any symptoms on shallot (A. cepa var. ascalonicum) or eight cultivars of onion (A. cepa). Two of the seven isolates caused slight root symptoms on garlic (A. sativum). All experiments were conducted two times and the results of both tests were similar. To our knowledge, this is the first report of a root and basal rot of leek in California caused by F. culmorum. The occurrence of this disease on transplants grown in a soilless rooting medium and on raised benches in enclosed greenhouses provides circumstantial evidence that the pathogen could possibly be seedborne. This disease was reported recently in Spain (1). References: (1) J. Armengol et al. Plant Dis. 85:679, 2001. (2) K. O'Donnell et al. Proc. Natl. Acad. Sci. 95:2044, 1998.


2016 ◽  
Vol 13 (4) ◽  
pp. 770-781 ◽  
Author(s):  
Baghdad Science Journal

New series of metal ions complexes have been prepared from the new ligand 1,5- Dimethyl-4- (5-oxohexan-2- ylideneamino) -2-phenyl- 1H-pyrazol-3 (2H)-one derived from 2,5-hexandione and 4-aminophenazone. Then, its V(IV), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) complexes prepared. The compounds have been characterized by FT-IR, UV-Vis, mass and 1H and 13C-NMR spectra, TGA curve, magnetic moment, elemental microanalyses (C.H.N.O.), chloride containing, Atomic absorption and molar conductance. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase, the heat of formation, (binding, total and electronic energy) and dipole moment at 298 K.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 113 ◽  
Author(s):  
Mervat EL-Hefny ◽  
Mohamed Z. M. Salem ◽  
Said I. Behiry ◽  
Hayssam M. Ali

In the present study, Melia azedarach wood blocks treated with different acetone extract concentrations from Withania somnifera fruits are assessed for their antibacterial and anti-fungal activities. Wood blocks of M. azedarach treated with W. somnifera fruit extract at concentrations of 0, 1, 2, and 3% are evaluated for in vitro antimicrobial activity against five genbank accessioned bacterial strains—Agrobacterium tumefaciens, Dickeya solani, Erwinia amylovora, Pseudomonas cichorii, and Serratia pylumthica—and two fungi, namely, Fusarium culmorum and Rhizoctonia solani. Through HPLC analysis we find that the most abundant quantified phenolic and flavonoid compounds of acetone extract (mg/100 g) are salicylic acid (9.49), vanillic acid (4.78), rutin (4702.58), and myricetin (1386.62). Wood treated with the extract at 2% and 3% show no growth of A. tumefaciens, E. amylovora, and P. cichorii. Use of the extract at 3% causes inhibition of fungal mycelia of F. culmorum and R. solani by 84.07% and 67.03%, respectively. In conclusion, potent antifungal and antibacterial activity against plant pathogens is found when an acetone extract of W. somnifera fruits is applied to wood samples.


Plants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 57 ◽  
Author(s):  
Niken Pujirahayu ◽  
Toshisada Suzuki ◽  
Takeshi Katayama

This study clarifies the chemical constituents and botanical origin of Tetragonula sapiens Cockerell bee propolis collected from Southeast Sulawesi, Indonesia. Propolis samples and resin of Mangifera indica were extracted with 99% ethanol to obtain an ethanol extract of propolis (EEP) and an ethanol extract of M. indica resin (EEM). Column chromatography, thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) were developed and used for the separation and isolation of compounds from the ether-soluble fraction. The structure of the compounds was determined by nuclear magnetic resonance (NMR) spectroscopic analysis, and their molecular weight analyzed by gas chromatography–mass spectrometry (GC–MS). The HPLC chromatogram of the EEP was then compared with the HPLC chromatogram of EEM to investigate the botanical origin of propolis. Five compounds were isolated from the EEP, and their structures were determined as mangiferolic acid, cycloartenol, ambonic acid, mangiferonic acid, and ambolic acid, which are cycloartane-type triterpenes. The characteristic peak of the HPLC chromatograms of EEP and EEM showed a similar pattern, which is that the main components of propolis were also found in M. indica resin. These results suggested that the propolis from Southeast Sulawesi was rich in cycloartane-type triterpenes, and the plant source of the propolis could be Mangifera indica (mango).


2018 ◽  
Vol 5 (4) ◽  
pp. 79 ◽  
Author(s):  
Pilar A. Soledispa ◽  
José González ◽  
Armando Cuéllar ◽  
Julio Pérez ◽  
Max Monan

A preliminary chemical characterization of main components of ethanolic extract with dried rhizomes of Smilax domingensis Wid. that grow in Cuba was done using a GCMS-QP2010 Ultra Shimadzu and the mass spectra of the compounds found in the extract was matched with the National Institute of Standards and Technology (NIST) library. After sample derivatization 125 chemical compounds were registered by the equipment and from them, 35 different chemical components were characterized and reported for the first time from this part of the plant in our country. The results demonstrate the developed method could be employed as a rapid and versatile analytical technique for identification of chemical constituents and quality control of Smilax domingensis.


Sign in / Sign up

Export Citation Format

Share Document