scholarly journals Antarctic Snowmelt Detected by Diurnal Variations of AMSR-E Brightness Temperature

2018 ◽  
Vol 10 (9) ◽  
pp. 1391 ◽  
Author(s):  
Lei Zheng ◽  
Chunxia Zhou ◽  
Ruixi Liu ◽  
Qizhen Sun

Antarctic surface snowmelt is sensitive to the polar climate. The ascending and descending passes of the Advanced Microwave Scanning Radiometer for Earth Observing System Sensor (AMSR-E) observed the Antarctic ice sheet in the afternoon (the warmest period) and at midnight (a cold period), enabling us to make full use of the diurnal amplitude variations (DAV) in brightness temperature (Tb) to detect snowmelt. The DAV in vertically polarized 36.5 GHz Tb (DAV36V) is extremely sensitive to liquid water and can reduce the effects of the structural changes in snowpacks during melt seasons. A set of controlled experiments based on the microwave emission model of layered snow (MEMLS) were conducted to study the changes of the vertically polarized 36.5 GHz Tb (Δ36V) during the transitions from dry to wet snow regimes. Results of the experiments suggest that 9 K can be used as a DAV36V threshold to recognize snowmelt. The analyses of snowmelt suggest that the Antarctic ice sheet began to melt in November and became almost completely frozen in late March of the following year. The total cumulative melt area from 2002 to 2011 was 2.44 × 106 km2, i.e., 17.58% of the Antarctic ice sheet. The annual cumulative melt area showed considerable fluctuations, with a significant (above 90% confidence level) drop of 5.24 × 104 km2/year in the short term. Persistent snowmelt (i.e., melt that continues for at least three days) detected by AMSR-E and hourly air temperatures (Tair) were very consistent. Though melt seasons became longer in the western Antarctic Peninsula and the Shackleton Ice Shelf, Antarctica was subjected to considerable decreases in duration and melting days in stable melt areas, i.e., −0.64 and −0.81 days/year, respectively. Surface snowmelt in Antarctica decreased temporally and spatially from 2002 to 2011.

Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. 1326-1330
Author(s):  
David M. Holland ◽  
Keith W. Nicholls ◽  
Aurora Basinski

The Southern Ocean exerts a major influence on the mass balance of the Antarctic Ice Sheet, either indirectly, by its influence on air temperatures and winds, or directly, mostly through its effects on ice shelves. How much melting the ocean causes depends on the temperature of the water, which in turn is controlled by the combination of the thermal structure of the surrounding ocean and local ocean circulation, which in turn is determined largely by winds and bathymetry. As climate warms and atmospheric circulation changes, there will be follow-on changes in the ocean circulation and temperature. These consequences will affect the pace of mass loss of the Antarctic Ice Sheet.


2016 ◽  
Vol 113 (13) ◽  
pp. 3453-3458 ◽  
Author(s):  
Richard Levy ◽  
David Harwood ◽  
Fabio Florindo ◽  
Francesca Sangiorgi ◽  
Robert Tripati ◽  
...  

Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23–14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.


2019 ◽  
Vol 11 (6) ◽  
pp. 653 ◽  
Author(s):  
Chunchun Gao ◽  
Yang Lu ◽  
Zizhan Zhang ◽  
Hongling Shi

Many recent mass balance estimates using the Gravity Recovery and Climate Experiment (GRACE) and satellite altimetry (including two kinds of sensors of radar and laser) show that the ice mass of the Antarctic ice sheet (AIS) is in overall decline. However, there are still large differences among previously published estimates of the total mass change, even in the same observed periods. The considerable error sources mainly arise from the forward models (e.g., glacial isostatic adjustment [GIA] and firn compaction) that may be uncertain but indispensable to simulate some processes not directly measured or obtained by these observations. To minimize the use of these forward models, we estimate the mass change of ice sheet and present-day GIA using multi-geodetic observations, including GRACE and Ice, Cloud and land Elevation Satellite (ICESat), as well as Global Positioning System (GPS), by an improved method of joint inversion estimate (JIE), which enables us to solve simultaneously for the Antarctic GIA and ice mass trends. The GIA uplift rates generated from our JIE method show a good agreement with the elastic-corrected GPS uplift rates, and the total GIA-induced mass change estimate for the AIS is 54 ± 27 Gt/yr, which is in line with many recent GPS calibrated GIA estimates. Our GIA result displays the presence of significant uplift rates in the Amundsen Sea Embayment of West Antarctica, where strong uplift has been observed by GPS. Over the period February 2003 to October 2009, the entire AIS changed in mass by −84 ± 31 Gt/yr (West Antarctica: −69 ± 24, East Antarctica: 12 ± 16 and the Antarctic Peninsula: −27 ± 8), greater than the GRACE-only estimates obtained from three Mascon solutions (CSR: −50 ± 30, JPL: −71 ± 30, and GSFC: −51 ± 33 Gt/yr) for the same period. This may imply that single GRACE data tend to underestimate ice mass loss due to the signal leakage and attenuation errors of ice discharge are often worse than that of surface mass balance over the AIS.


Nature ◽  
1959 ◽  
Vol 183 (4675) ◽  
pp. 1575-1577 ◽  
Author(s):  
T. F. GASKELL

Sign in / Sign up

Export Citation Format

Share Document