scholarly journals Data-Driven Interpolation of Sea Level Anomalies Using Analog Data Assimilation

2019 ◽  
Vol 11 (7) ◽  
pp. 858 ◽  
Author(s):  
Redouane Lguensat ◽  
Phi Huynh Viet ◽  
Miao Sun ◽  
Ge Chen ◽  
Tian Fenglin ◽  
...  

From the recent developments of data-driven methods as a means to better exploit large-scale observation, simulation and reanalysis datasets for solving inverse problems, this study addresses the improvement of the reconstruction of higher-resolution Sea Level Anomaly (SLA) fields using analog strategies. This reconstruction is stated as an analog data assimilation issue, where the analog models rely on patch-based and Empirical Orthogonal Functions (EOF)-based representations to circumvent the curse of dimensionality. We implement an Observation System Simulation Experiment (OSSE) in the South China Sea. The reported results show the relevance of the proposed framework with a significant gain in terms of Root Mean Square Error (RMSE) for scales below 100 km. We further discuss the usefulness of the proposed analog model as a means to exploit high-resolution model simulations for the processing and analysis of current and future satellite-derived altimetric data with regard to conventional interpolation schemes, especially optimal interpolation.

2018 ◽  
Author(s):  
Jaime Hernandez-Lasheras ◽  
Baptiste Mourre

Abstract. The REP14-MEDsea trial carried out off the West coast of Sardinia in June 2014 provided a rich set of observations from both ship-based CTDs and a fleet of underwater gliders. We present the results of several simulations assimilating data either from CTDs or from different subsets of glider data, including up to 8 vehicles, in addition to satellite sea level anomalies, surface temperature and Argo profiles. The WMOP regional ocean model is used with a Local Mutimodel Ensemble Optimal Interpolation scheme to recursively ingest both lower-resolution large scale and dense local observations over the whole sea trial duration. Results show the capacity of the system to ingest both type of data, leading to improvements in the representation of all assimilated variables. These improvements persist during the 3-day periods separating two analysis. At the same time, the system presents some limitations in properly representing the smaller scale structures, which are smoothed out by the model error covariances provided by the ensemble. An evaluation of the forecasts using independent measurements from shipborne CTDs and a towed Scanfish deployed at the end of the sea trial shows that the simulations assimilating initial CTD data reduce the error by 30 to 40 % (according to the variable under consideration) with respect to the simulation without data assimilation. In the glider-data-assimilative experiments, the forecast error is reduced as the number of vehicles increases. The simulation assimilating CTDs outperforms the simulations assimilating data from one to four gliders. A fleet of eight gliders provides a similar performance as the 10-km spaced CTD initilization survey in these experiments, with an overall 40 % model error reduction capacity with respect to the simulation without data assimilation.


2005 ◽  
Vol 23 (6) ◽  
pp. 1997-2010 ◽  
Author(s):  
K. Bergant ◽  
M. Sušnik ◽  
I. Strojan ◽  
A. G. P. Shaw

Abstract. Sea level (SLH) variability at the Adriatic coast was investigated for the period 1872–2001 using monthly average values of observations at 13 tide gauge stations. Linear trends and seasonal cycles were investigated first and removed afterwards from the data. Empirical Orthogonal Functions (EOF) analysis was used further on remaining anomalies (SLA) to extract the regional intermonthly variability of SLH. It was found that the leading EOF and its principal component (PC) explain a major part of SLA variability (92%). The correlation between the reconstructed SLA, based on leading EOF and its PC, and overlapping observed SLA values for selected tide gauge stations is between 0.93 and 0.99. Actual SLH values at tide gauge stations can be reconstructed and some gaps in the data can be filled in on the basis of estimated SLA values if reasonable estimates of long-term trends and seasonal cycles are also available. A strong, seasonally dependent relationship between SLA at the Adriatic coast and atmospheric forcing, represented by sea level pressure (SLP) fields, was also found. Comparing the time series of leading PC and gridded SLP data for the period 1948–2001, the highest correlation coefficients (r) of –0.92 in winter, –0.84 in spring, –0.66 in summer, and –0.91 in autumn were estimated for a SLP grid point located in northern Italy. The SLP variability on this grid point contains information about the isostatic response of the sea level at the Adriatic coast, but can also be treated as a sort of teleconnection index representing the large-scale SLP variability across central and southern Europe. To some extent the large-scale SLP variability that affects the SLA at the Adriatic coast can be related to the North Atlantic Oscillation (NAO), because significant correlations were found between the NAO index and the first PC of SLA (rwinter=–0.56, rspring=–0.45, rsummer=–0.48, and rautumn=–0.43) for the period 1872–2001. The use of partial least-squares (PLS) regression between large-scale SLP fields and SLA only slightly improved the description of the SLA dependence on SLP forcing in comparison to the single grid point approach. A strong relationship between atmospheric pressure and the sea level could represent an additional possibility for filling in the gaps in the tide gauge data. Keywords. Oceanography: general (Climate and interannual variability) – Oceanography: physical (Air-sea interactions; sea level variations)


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 91-109
Author(s):  
Mihhail Zujev ◽  
Jüri Elken ◽  
Priidik Lagemaa

Abstract. The tested data assimilation (DA) method based on EOF (Empirical Orthogonal Functions) reconstruction of observations decreased centred root-mean-square difference (RMSD) of surface temperature (SST) and salinity (SSS) in reference to observations in the NE Baltic Sea by 22 % and 34 %, respectively, compared to the control run without DA. The method is based on the covariance estimates from long-term model data. The amplitudes of the pre-calculated dominating EOF modes are estimated from point observations using least-squares optimization; the method builds the variables on a regular grid. The study used a large number of in situ FerryBox observations along four ship tracks from 1 May to 31 December 2015, and observations from research vessels. Within DA, observations were reconstructed as daily SST and SSS maps on the coarse grid with a resolution of 5 × 10 arcmin by N and E (ca. 5 nautical miles) and subsequently were interpolated to the fine grid of the prognostic model with a resolution of 0.5 × 1 arcmin by N and E (ca. 0.5 nautical miles). The fine-grid observational fields were used in the DA relaxation scheme with daily interval. DA with EOF reconstruction technique was found to be feasible for further implementation studies, since (1) the method that works on the large-scale patterns (mesoscale features are neglected by taking only the leading EOF modes) improves the high-resolution model performance by a comparable or even better degree than in the other published studies, and (2) the method is computationally effective.


2020 ◽  
Author(s):  
Mihhail Zujev ◽  
Jüri Elken ◽  
Priidik Lagemaa

Abstract. The tested data assimilation (DA) method based on EOF (Empirical Orthogonal Functions) reconstruction of observations decreased RMSD of surface temperature (SST) and salinity (SSS) in reference to observations in the NE Baltic Sea by 22 % and 34 %, respectively, compared to the control run without DA. The method is based on the covariance estimates from the long period model data. The amplitudes of the pre-calculated gravest EOF modes are estimated from point observations using least-squares optimization; the method builds the variables on the regular grid. The study used FerryBox observations along four ship tracks from 1 May to 31 December 2015, and observations from research vessels. In the reconstruction, this data amount was compressed into daily averages over 5’ N X 10’ E coarse grid. Skill was tested based on daily averages on the 0.5’ N X 1’ E original fine grid of the model. DA with EOF reconstruction technique was found feasible for further implementation studies, since: 1) the method that works on the large-scale patterns (mesoscale features are neglected by taking only the gravest EOF modes) improves the high-resolution model performance by comparable or even better degree than in the other published studies, 2) the method is computationally effective.


Ocean Science ◽  
2014 ◽  
Vol 10 (5) ◽  
pp. 845-862 ◽  
Author(s):  
J.-M. Beckers ◽  
A. Barth ◽  
I. Tomazic ◽  
A. Alvera-Azcárate

Abstract. We present a method in which the optimal interpolation of multi-scale processes can be expanded into a succession of simpler interpolations. First, we prove how the optimal analysis of a superposition of two processes can be obtained by different mathematical formulations involving iterations and analysis focusing on a single process. From the different mathematical equivalent formulations, we then select the most efficient ones by analyzing the behavior of the different possibilities in a simple and well-controlled test case. The clear guidelines deduced from this experiment are then applied to a real situation in which we combine large-scale analysis of hourly Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite images using data interpolating empirical orthogonal functions (DINEOF) with a local optimal interpolation using a Gaussian covariance. It is shown that the optimal combination indeed provides the best reconstruction and can therefore be exploited to extract the maximum amount of useful information from the original data.


2007 ◽  
Vol 37 (3) ◽  
pp. 787-793 ◽  
Author(s):  
Lee-Lueng Fu

Abstract The Argentine Basin of the South Atlantic Ocean is a region of complicated ocean dynamics involving a wide range of spatial and temporal scales. Previous studies reported the existence of a basin mode of topographic barotropic Rossby waves with a period close to 25 days in the region. Using observations of sea level anomalies from satellite altimeter measurements, the present study provides evidence of interaction between the large-scale 25-day waves and the energetic mesoscale variability of the region. The amplitude of the 25-day waves is highly intermittent with dominant periods in the range of 110–150 days. Within this period band, the wave amplitude is coherent with the energy level of the mesoscale variability: when the mesoscale energy level goes down, the wave amplitude goes up, and vice versa, suggesting an exchange of energy between the two scales. This coherence is linked to the first three empirical orthogonal functions (EOFs) of the sea level anomalies. The spatial patterns of these EOFs are characterized by eddies and meanders associated with the Brazil–Malvinas Confluence. The findings of the study suggest a mechanism of energy exchange at work between the mesoscale variability and the large-scale waves in the Argentine Basin.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


1988 ◽  
Vol 39 (3) ◽  
pp. 245 ◽  
Author(s):  
A Huyer ◽  
RL Smith ◽  
PJ Stabeno ◽  
JA Church ◽  
NJ White

The Australian Coastal Experiment was conducted off the east coast of New South Wales between September 1983 and March 1984. The experiment was conducted with arrays of current meters spanning the continental margin at three latitudes (37.5�, 34.5�, and 33.0�S.), additional shelf moorings at 29� and 42�S. coastal wind and sea-level measurements, monthly conductivity-temperature-depth probe/expendable bathythermograph (CTD/XBT) surveys, and two satellite-tracked buoys. Over the continental shelf and slope, the alongshore component of the current generally exceeded the onshore component, and the subtidal (<0.6 cpd, cycles per day) current variability greatly exceeded the mean flow. Part of the current variability was associated with two separate warm-core eddies that approached the coast, causing strong (>50 cm sec-1), persistent (>8 days), southward currents over the continental slope and outer shelf. Temperature and geostrophic velocity sections through the eddies, maps of ship's drift vectors and temperature contours at 250 m, and the satellite-tracked drifter trajectories showed that these eddies were similar in structure to those observed previously in the East Australian Current region. Both eddies migrated generally southward. Eddy currents over the shelf and slope were rare at Cape Howe (37.5�S.), more common near Sydney (34.5�S.), and frequent at Newcastle (33.0�S.), where strong northward currents were also observed. Near Sydney, the eddy currents over the slope turned clockwise with depth between 280 and 740 m, suggesting net downwelling there. Repeated CTD sections also indicated onshore transport and downwelling at shallower levels; presumably, upwelling occurred farther south where the eddy currents turned offshore. Periodic rotary currents over the continental slope near Sydney and Newcastle indicated the presence of small cyclonic eddies on the flank of a much larger anticyclonic eddy. Between early October and late January, no strong southward currents were observed over the continental margin near Sydney. Data from this 'eddy-free' period were analysed further to examine the structure and variability of the coastal currents. Much of this variability was correlated with fluctuations in coastal sea-level (at zero lag) and with the wind stress (at various lags). The coherence and phase relationships among current, wind-stress, and sea-level records at different latitudes (determined from spectral analysis and frequency-domain empirical orthogonal functions) were consistent with the equatorward propagation of coastal-trapped waves generated by winds in phase with those near Cape Howe. Time-domain empirical orthogonal functions show that the current fluctuations decayed with distance from shore and with depth, as expected of coastal-trapped waves.


Author(s):  
Michael Binsar Lubis ◽  
Mehrdad Kimiaei ◽  
Hongwei An ◽  
Reza Azarhoush

Abstract Typical recommended current profiles for marine operations can be found in offshore engineering guidelines and standards. However, for some offshore components (e.g. risers, umbilicals, risers) typical simplified current profiles can easily lead to unrealistic and conservative results. Due to recent developments in current measuring technology, current speed for deep water location can be easily acquired. However, the current speeds are usually recorded for long periods and in many measurement points along the water column. Hence, finding the extreme current profile based on the recorded time-history data is not an easy task since it needs excessive computational efforts. To determine the overall response of an offshore system, various methods have been developed to minimize the required computational efforts in working with big number of irregular current profiles. Mode-based analysis using empirical orthogonal functions is one of these methods. Total number of the utilized modes plays an important role in the numerical complexity of the problem as well as the accuracy of the results. In this study, for a given deep water location, the effects of the reduced number of modes are investigated through response analysis of a simple vertical fixed slender structure under thousands of current profiles. It is found that the reduced-mode profile can produce a good representation of the measured current profile, however it tends to underestimate the structural response.


Sign in / Sign up

Export Citation Format

Share Document