scholarly journals Unmanned Aerial Vehicle for Remote Sensing Applications—A Review

2019 ◽  
Vol 11 (12) ◽  
pp. 1443 ◽  
Author(s):  
Huang Yao ◽  
Rongjun Qin ◽  
Xiaoyu Chen

The unmanned aerial vehicle (UAV) sensors and platforms nowadays are being used in almost every application (e.g., agriculture, forestry, and mining) that needs observed information from the top or oblique views. While they intend to be a general remote sensing (RS) tool, the relevant RS data processing and analysis methods are still largely ad-hoc to applications. Although the obvious advantages of UAV data are their high spatial resolution and flexibility in acquisition and sensor integration, there is in general a lack of systematic analysis on how these characteristics alter solutions for typical RS tasks such as land-cover classification, change detection, and thematic mapping. For instance, the ultra-high-resolution data (less than 10 cm of Ground Sampling Distance (GSD)) bring more unwanted classes of objects (e.g., pedestrian and cars) in land-cover classification; the often available 3D data generated from photogrammetric images call for more advanced techniques for geometric and spectral analysis. In this paper, we perform a critical review on RS tasks that involve UAV data and their derived products as their main sources including raw perspective images, digital surface models, and orthophotos. In particular, we focus on solutions that address the “new” aspects of the UAV data including (1) ultra-high resolution; (2) availability of coherent geometric and spectral data; and (3) capability of simultaneously using multi-sensor data for fusion. Based on these solutions, we provide a brief summary of existing examples of UAV-based RS in agricultural, environmental, urban, and hazards assessment applications, etc., and by discussing their practical potentials, we share our views in their future research directions and draw conclusive remarks.

2021 ◽  
Vol 13 (15) ◽  
pp. 2912
Author(s):  
Jingrui Wang ◽  
Shuqing Wang ◽  
Dongxiao Zou ◽  
Huimin Chen ◽  
Run Zhong ◽  
...  

Unmanned Aerial Vehicle (UAV) Remote sensing (RS) has unique advantages over traditional satellite RS, including convenience, high resolution, affordability and fast acquisition speed, making it widely used in many fields. To provide an overview of the development of UAV RS applications during the past decade, we screened related publications from the Web of Science core database from 2010 to 2021, built co-author networks, a discipline interaction network, a keywords timeline view, a co-citation cluster, and detected burst citations using bibliometrics and social network analysis. Our results show that: (1) The number of UAV RS publications had an increasing trend, with explosive growth in the past five years. The number of papers published by China and the United States (US) is far ahead in this field; (2) The US has currently the greatest influence in this field through the largest number of international cooperations. Cooperation is mainly concentrated in countries and institutions with a large number of publications but is not widely distributed. (3) The application of UAV RS involves multiple interdisciplinary subjects, among which “Environmental Science and Ecology” ranks first; (4) Future research trends of UAV RS are expected to be related to artificial intelligence (e.g., artificial neural networks-based research). This paper provides a scientific basis and guidance for future developments of UAV RS applications, which can help the research community to better grasp the developments of this field.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327 ◽  
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Natural, semi-natural, and planted forests are a key asset worldwide, providing a broad range of positive externalities. For sustainable forest planning and management, remote sensing (RS) platforms are rapidly going mainstream. In a framework where scientific production is growing exponentially, a systematic analysis of unmanned aerial vehicle (UAV)-based forestry research papers is of paramount importance to understand trends, overlaps and gaps. The present review is organized into two parts (Part I and Part II). Part II inspects specific technical issues regarding the application of UAV-RS in forestry, together with the pros and cons of different UAV solutions and activities where additional effort is needed, such as the technology transfer. Part I systematically analyzes and discusses general aspects of applying UAV in natural, semi-natural and artificial forestry ecosystems in the recent peer-reviewed literature (2018–mid-2020). The specific goals are threefold: (i) create a carefully selected bibliographic dataset that other researchers can draw on for their scientific works; (ii) analyze general and recent trends in RS forest monitoring (iii) reveal gaps in the general research framework where an additional activity is needed. Through double-step filtering of research items found in the Web of Science search engine, the study gathers and analyzes a comprehensive dataset (226 articles). Papers have been categorized into six main topics, and the relevant information has been subsequently extracted. The strong points emerging from this study concern the wide range of topics in the forestry sector and in particular the retrieval of tree inventory parameters often through Digital Aerial Photogrammetry (DAP), RGB sensors, and machine learning techniques. Nevertheless, challenges still exist regarding the promotion of UAV-RS in specific parts of the world, mostly in the tropical and equatorial forests. Much additional research is required for the full exploitation of hyperspectral sensors and for planning long-term monitoring.


2021 ◽  
Author(s):  
Eoghan Keany ◽  
Geoffrey Bessardon ◽  
Emily Gleeson

<p>To represent surface thermal, turbulent and humidity exchanges, Numerical Weather Prediction (NWP) systems require a land-cover classification map to calculate sur-face parameters used in surface flux estimation. The latest land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAMNWP system for operational weather forecasting is ECOCLIMAP-SG (ECO-SG). The first evaluation of ECO-SG over Ireland suggested that sparse urban areas are underestimated and instead appear as vegetation areas (1). While the work of (2) on land-cover classification helps to correct the horizontal extent of urban areas, the method does not provide information on the vertical characteristics of urban areas. ECO-SG urban classification implicitly includes building heights (3), and any improvement to ECO-SG urban area extent requires a complementary building height dataset.</p><p>Openly accessible building height data at a national scale does not exist for the island of Ireland. This work seeks to address this gap in availability by extrapolating the preexisting localised building height data across the entire island. The study utilises information from both the temporal and spatial dimensions by creating band-wise temporal aggregation statistics from morphological operations, for both the Sentinel-1A/B and Sentinel-2A/B constellations (4). The extrapolation uses building height information from the Copernicus Urban Atlas, which contains regional coverage for Dublin at 10 m x10 m resolution (5). Various regression models were then trained on these aggregated statistics to make pixel-wise building height estimates. These model estimates were then evaluated with an adjusted RMSE metric, with the most accurate model chosen to map the entire country. This method relies solely on freely available satellite imagery and open-source software, providing a cost-effective mapping service at a national scale that can be updated more frequently, unlike expensive once-off private mapping services. Furthermore, this process could be applied by these services to reduce costs by taking a small representative sample and extrapolating the rest of the area. This method can be applied beyond national borders providing a uniform map that does not depends on the different private service practices facilitating the updates of global or continental land-cover information used in NWP.</p><p> </p><p>(1) G. Bessardon and E. Gleeson, “Using the best available physiography to improve weather forecasts for Ireland,” in Challenges in High-Resolution Short Range NWP at European level including forecaster-developer cooperation, European Meteorological Society, 2019.</p><p>(2) E. Walsh, et al., “Using machine learning to produce a very high-resolution land-cover map for Ireland, ” Advances in Science and Research,  (accepted for publication).</p><p>(3) CNRM, "Wiki - ECOCLIMAP-SG" https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki</p><p>(4) D. Frantz, et al., “National-scale mapping of building height using sentinel-1 and sentinel-2 time series,” Remote Sensing of Environment, vol. 252, 2021.</p><p>(5) M. Fitrzyk, et al., “Esa Copernicus sentinel-1 exploitation activities,” in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019.</p>


2021 ◽  
Author(s):  
Shuang Wu ◽  
Lei Deng ◽  
Lijie Guo ◽  
Yanjie Wu

Abstract Background: Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Consequently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies do not fully exploit the advantages of Unmanned Aerial Vehicle (UAV) imagery with high spatial resolution, such as not removing the background (soil and shadow, etc.). Furthermore, the advancement of multi-sensor synchronous observation and integration technology allows for the simultaneous collection of canopy spectral, structural, and thermal data, making it possible for data fusion.Methods: To investigate the potential of high-resolution UAV imagery combined with multi-sensor data fusion in LAI estimation. High-resolution UAV imagery was obtained with a multi-sensor integrated MicaSense Altum camera to extract the wheat canopy's spectral, structural, and thermal features. After removing the soil background, all features were fused, and LAI was estimated using Random Forest and Support Vector Machine Regression.Result: The results show that: (1) the soil background reduced the accuracy of the LAI prediction, and soil background could be effectively removed by taking advantage of high-resolution UAV imagery. After removing the soil background, the LAI prediction accuracy improved significantly, R2 raised by about 0.27, and RMSE fell by about 0.476. (2) The fusion of multi-sensor synchronous observation data improved LAI prediction accuracy and achieved the best accuracy (R2 = 0.815 and RMSE = 1.023). (3) When compared to other variables, 23 CHM, NRCT, NDRE, and BLUE are crucial for LAI estimation. Even the simple Multiple Linear Regression model could achieve high prediction accuracy (R2 = 0.679 and RMSE = 1.231), providing inspiration for rapid and efficient LAI prediction.Conclusions: The method of this study can be transferred to other sites with more extensive areas or similar agriculture structures, which will facilitate agricultural production and management.


2020 ◽  
Vol 12 (2) ◽  
pp. 311 ◽  
Author(s):  
Chun Liu ◽  
Doudou Zeng ◽  
Hangbin Wu ◽  
Yin Wang ◽  
Shoujun Jia ◽  
...  

Urban land cover classification for high-resolution images is a fundamental yet challenging task in remote sensing image analysis. Recently, deep learning techniques have achieved outstanding performance in high-resolution image classification, especially the methods based on deep convolutional neural networks (DCNNs). However, the traditional CNNs using convolution operations with local receptive fields are not sufficient to model global contextual relations between objects. In addition, multiscale objects and the relatively small sample size in remote sensing have also limited classification accuracy. In this paper, a relation-enhanced multiscale convolutional network (REMSNet) method is proposed to overcome these weaknesses. A dense connectivity pattern and parallel multi-kernel convolution are combined to build a lightweight and varied receptive field sizes model. Then, the spatial relation-enhanced block and the channel relation-enhanced block are introduced into the network. They can adaptively learn global contextual relations between any two positions or feature maps to enhance feature representations. Moreover, we design a parallel multi-kernel deconvolution module and spatial path to further aggregate different scales information. The proposed network is used for urban land cover classification against two datasets: the ISPRS 2D semantic labelling contest of Vaihingen and an area of Shanghai of about 143 km2. The results demonstrate that the proposed method can effectively capture long-range dependencies and improve the accuracy of land cover classification. Our model obtains an overall accuracy (OA) of 90.46% and a mean intersection-over-union (mIoU) of 0.8073 for Vaihingen and an OA of 88.55% and a mIoU of 0.7394 for Shanghai.


2019 ◽  
Vol 11 (9) ◽  
pp. 2580 ◽  
Author(s):  
Tainá T. Guimarães ◽  
Maurício R. Veronez ◽  
Emilie C. Koste ◽  
Eniuce M. Souza ◽  
Diego Brum ◽  
...  

The concentration of suspended solids in water is one of the quality parameters that can be recovered using remote sensing data. This paper investigates the data obtained using a sensor coupled to an unmanned aerial vehicle (UAV) in order to estimate the concentration of suspended solids in a lake in southern Brazil based on the relation of spectral images and limnological data. The water samples underwent laboratory analysis to determine the concentration of total suspended solids (TSS). The images obtained using the UAV were orthorectified and georeferenced so that the values referring to the near, green, and blue infrared channels were collected at each sampling point to relate with the laboratory data. The prediction of the TSS concentration was performed using regression analysis and artificial neural networks. The obtained results were important for two main reasons. First, although regression methods have been used in remote sensing applications, they may not be adequate to capture the linear and/or non-linear relationships of interest. Second, results show that the integration of UAV in the mapping of water bodies together with the application of neural networks in the data analysis is a promising approach to predict TSS as well as their temporal and spatial variations.


Sign in / Sign up

Export Citation Format

Share Document