scholarly journals Spatially and Temporally Continuous Leaf Area Index Mapping for Crops through Assimilation of Multi-resolution Satellite Data

2019 ◽  
Vol 11 (21) ◽  
pp. 2517 ◽  
Author(s):  
Huaan Jin ◽  
Weixing Xu ◽  
Ainong Li ◽  
Xinyao Xie ◽  
Zhengjian Zhang ◽  
...  

As a key parameter that represents the structural characteristics and biophysical changes of crop canopy, the leaf area index (LAI) plays a significant role in monitoring crop growth and mapping yield. A considerable amount of farmland is dispersed with strong spatial heterogeneity. The existing time series satellite LAI products fail to capture spatial distributions and growth changes of crops due to coarse spatial resolutions and spatio-temporal discontinuities. Therefore, it becomes crucial for fine resolution LAI mapping in time series over crop areas. A two-stage data assimilation scheme was developed for dense time series LAI mapping in this study. A LAI dynamic model was first constructed using multi-year MODIS LAI data. This model coupled with the PROSAIL radiative transfer model, and MOD09A1 reflectance data were used to retrieve temporal LAI profiles at the 500 m resolution with the assistance of the very fast simulated annealing (VFSA) algorithm. Then, the LAI dynamics at the 500 m scale were incorporated as prior information into the Landsat 8 OLI reflectance data for time series LAI mapping at the 30 m resolution. Finally, the spatio-temporal continuities and retrieval accuracies of assimilated LAI values were assessed at the 500 m and 30 m resolutions respectively, using the MODIS LAI product, fine resolution LAI reference map and field measurements. The results indicated that the assimilated the LAI estimations at the 500 m scale effectively eliminated the spatio-temporal discontinuities of the MODIS LAI product and displayed reasonable temporal profiles and spatial integrity of LAI. Moreover, the 30 m resolution LAI retrievals showed more abundant spatial details and reasonable temporal profiles than the counterparts at the 500 m scale. The determination coefficient R2 between the estimated and field LAI values was 0.76 with a root mean square error (RMSE) value of 0.71 at the 30 m scale. The developed method not only improves the spatio-temporal continuities of the LAI at the 500 m scale, but also obtains 30 m resolution LAI maps with fine spatial and temporal consistencies, which can be expected to meet the needs of analysis on crop dynamic changes and yield mapping in fragmented and highly heterogeneous areas.

2020 ◽  
Author(s):  
Hongmin Zhou ◽  
Guodong Zhang ◽  
Changjing Wang ◽  
Jindi Wang

<p>Leaf area index (LAI) is one of the most important biophysical variables for regulating the physiological processes of vegetation canopy. Time series high-resolution LAI data is critical for vegetation growth monitoring, surface process simulation and global change research. However, there are no high-resolution LAI data products that are continuous in time and space. In this paper, we use MODIS LAI products and Landsat surface reflectance data to generate time series high-resolution LAI datasets from 2000 to 2018 in Saihanba based on the ensemble kalman filter, and uses time-series LAI data to monitor surface vegetation changes according to the Prophet model. Firstly, the multi-step Savitzky–Golay filtering algorithm is used to smooth the MODIS LAI data, and the upper envelope of time series LAI is generated. A dynamic model is constructed according to the trend of LAI upper envelope to provide the short-range forecast of LAI. Then the ground measured LAI data and the corresponding Landsat reflectance data are used to train a Back Propagation neural network. High-resolution LAI data from BP model is used to update the dynamic model in real time to generate high-resolution time series LAI data based on EnKF. Finally, the time series LAI data is used as the input of Prophet deep learning model to obtain the LAI time series prediction values of a certain year. Comparing the prediction results with the LAI of current year, the correlation coefficient and the root mean square error distribution maps can be obtained, a support vector machine method is used to classify the disturbed pixels and the normal pixels. The LAI time series estimation has a high accuracy of R²larger than 0.90, and RMSE less than 0.54. The disturbance monitoring results indicate that vegetation in 2009, 2010, 2013, 2014, 2015, 2017 is seriously disturbed, Variation of meteorological conditions and deforest contributes heavily to the disturbance.</p>


2014 ◽  
Vol 7 (1) ◽  
pp. 195-210 ◽  
Author(s):  
Yonghua Qu ◽  
Wenchao Han ◽  
Mingguo Ma

2014 ◽  
Vol 6 (10) ◽  
pp. 9194-9212 ◽  
Author(s):  
Jingyi Jiang ◽  
Zhiqiang Xiao ◽  
Jindi Wang ◽  
Jinling Song

2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


2008 ◽  
Vol 35 (10) ◽  
pp. 1070 ◽  
Author(s):  
Sigfredo Fuentes ◽  
Anthony R. Palmer ◽  
Daniel Taylor ◽  
Melanie Zeppel ◽  
Rhys Whitley ◽  
...  

Leaf area index (LAI) is one of the most important variables required for modelling growth and water use of forests. Functional–structural plant models use these models to represent physiological processes in 3-D tree representations. Accuracy of these models depends on accurate estimation of LAI at tree and stand scales for validation purposes. A recent method to estimate LAI from digital images (LAID) uses digital image capture and gap fraction analysis (Macfarlane et al. 2007b) of upward-looking digital photographs to capture canopy LAID (cover photography). After implementing this technique in Australian evergreen Eucalyptus woodland, we have improved the method of image analysis and replaced the time consuming manual technique with an automated procedure using a script written in MATLAB 7.4 (LAIM). Furthermore, we used this method to compare MODIS LAI values with LAID values for a range of woodlands in Australia to obtain LAI at the forest scale. Results showed that the MATLAB script developed was able to successfully automate gap analysis to obtain LAIM. Good relationships were achieved when comparing averaged LAID and LAIM (LAIM = 1.009 – 0.0066 LAID; R2 = 0.90) and at the forest scale, MODIS LAI compared well with LAID (MODIS LAI = 0.9591 LAID – 0.2371; R2 = 0.89). This comparison improved when correcting LAID with the clumping index to obtain effective LAI (MODIS LAI = 1.0296 LAIe + 0.3468; R2 = 0.91). Furthermore, the script developed incorporates a function to connect directly a digital camera, or high resolution webcam, from a laptop to obtain cover photographs and LAI analysis in real time. The later is a novel feature which is not available on commercial LAI analysis softwares for cover photography. This script is available for interested researchers.


2020 ◽  
Vol 177 ◽  
pp. 105692
Author(s):  
Xijia Zhou ◽  
Pengxin Wang ◽  
Kevin Tansey ◽  
Shuyu Zhang ◽  
Hongmei Li ◽  
...  

2020 ◽  
Vol 12 (13) ◽  
pp. 2148 ◽  
Author(s):  
Adnan Rajib ◽  
I Luk Kim ◽  
Heather E. Golden ◽  
Charles R. Lane ◽  
Sujay V. Kumar ◽  
...  

Traditional watershed modeling often overlooks the role of vegetation dynamics. There is also little quantitative evidence to suggest that increased physical realism of vegetation dynamics in process-based models improves hydrology and water quality predictions simultaneously. In this study, we applied a modified Soil and Water Assessment Tool (SWAT) to quantify the extent of improvements that the assimilation of remotely sensed Leaf Area Index (LAI) would convey to streamflow, soil moisture, and nitrate load simulations across a 16,860 km2 agricultural watershed in the midwestern United States. We modified the SWAT source code to automatically override the model’s built-in semiempirical LAI with spatially distributed and temporally continuous estimates from Moderate Resolution Imaging Spectroradiometer (MODIS). Compared to a “basic” traditional model with limited spatial information, our LAI assimilation model (i) significantly improved daily streamflow simulations during medium-to-low flow conditions, (ii) provided realistic spatial distributions of growing season soil moisture, and (iii) substantially reproduced the long-term observed variability of daily nitrate loads. Further analysis revealed that the overestimation or underestimation of LAI imparted a proportional cascading effect on how the model partitions hydrologic fluxes and nutrient pools. As such, assimilation of MODIS LAI data corrected the model’s LAI overestimation tendency, which led to a proportionally increased rootzone soil moisture and decreased plant nitrogen uptake. With these new findings, our study fills the existing knowledge gap regarding vegetation dynamics in watershed modeling and confirms that assimilation of MODIS LAI data in watershed models can effectively improve both hydrology and water quality predictions.


Sign in / Sign up

Export Citation Format

Share Document