scholarly journals Remote Sensing of Mangroves and Estuarine Communities in Central Queensland, Australia

2020 ◽  
Vol 12 (1) ◽  
pp. 197
Author(s):  
Debbie Chamberlain ◽  
Stuart Phinn ◽  
Hugh Possingham

Great Barrier Reef catchments are under pressure from the effects of climate change, landscape modifications, and hydrology alterations. With the use of remote sensing datasets covering large areas, conventional methods of change detection can expose broad transitions, whereas workflows that excerpt data for time-series trends divulge more subtle transformations of land cover modification. Here, we combine both these approaches to investigate change and trends in a large estuarine region of Central Queensland, Australia, that encompasses a national park and is adjacent to the Great Barrier Reef World Heritage site. Nine information classes were compiled in a maximum likelihood post classification change analysis in 2004–2017. Mangroves decreased (1146 hectares), as was the case with estuarine wetland (1495 hectares), and saltmarsh grass (1546 hectares). The overall classification accuracies and Kappa coefficient for 2004, 2006, 2009, 2013, 2015, and 2017 land cover maps were 85%, 88%, 88%, 89%, 81%, and 92%, respectively. The cumulative area of open forest, estuarine wetland, and saltmarsh grass (1628 hectares) was converted to pasture in a thematic change analysis showing the “from–to” change. We generated linear regression relationships to examine trends in pixel values across the time series. Our findings from a trend analysis showed a decreasing trend (p value range = 0.001–0.099) in the vegetation extent of open forest, fringing mangroves, estuarine wetlands, saltmarsh grass, and grazing areas, but this was inconsistent across the study site. Similar to reports from tropical regions elsewhere, saltmarsh grass is poorly represented in the national park. A severe tropical cyclone preceding the capture of the 2017 Landsat 8 Operational Land Imager (OLI) image was likely the main driver for reduced areas of shoreline and stream vegetation. Our research contributes to the body of knowledge on coastal ecosystem dynamics to enable planning to achieve more effective conservation outcomes.

2021 ◽  
Vol 13 (12) ◽  
pp. 2299
Author(s):  
Andrea Tassi ◽  
Daniela Gigante ◽  
Giuseppe Modica ◽  
Luciano Di Martino ◽  
Marco Vizzari

With the general objective of producing a 2018–2020 Land Use/Land Cover (LULC) map of the Maiella National Park (central Italy), useful for a future long-term LULC change analysis, this research aimed to develop a Landsat 8 (L8) data composition and classification process using Google Earth Engine (GEE). In this process, we compared two pixel-based (PB) and two object-based (OB) approaches, assessing the advantages of integrating the textural information in the PB approach. Moreover, we tested the possibility of using the L8 panchromatic band to improve the segmentation step and the object’s textural analysis of the OB approach and produce a 15-m resolution LULC map. After selecting the best time window of the year to compose the base data cube, we applied a cloud-filtering and a topography-correction process on the 32 available L8 surface reflectance images. On this basis, we calculated five spectral indices, some of them on an interannual basis, to account for vegetation seasonality. We added an elevation, an aspect, a slope layer, and the 2018 CORINE Land Cover classification layer to improve the available information. We applied the Gray-Level Co-Occurrence Matrix (GLCM) algorithm to calculate the image’s textural information and, in the OB approaches, the Simple Non-Iterative Clustering (SNIC) algorithm for the image segmentation step. We performed an initial RF optimization process finding the optimal number of decision trees through out-of-bag error analysis. We randomly distributed 1200 ground truth points and used 70% to train the RF classifier and 30% for the validation phase. This subdivision was randomly and recursively redefined to evaluate the performance of the tested approaches more robustly. The OB approaches performed better than the PB ones when using the 15 m L8 panchromatic band, while the addition of textural information did not improve the PB approach. Using the panchromatic band within an OB approach, we produced a detailed, 15-m resolution LULC map of the study area.


Author(s):  
Babita Singh

Abstract: Remote sensing and Geographic information system (GIS) techniques can be used for the changing pattern of landscape. The study was conducted in Dehradun, Haridwar and Pauri Garhwal Districts of Uttarakhand State, India. In order to understand dynamics of landscape and to examine changes in the land use/cover due to anthropogenic activities, two satellite images (Landsat 5 and Landsat 8) for 1998 and 2020 were used. Google Earth Engine was used to perform supervised classification. Spectral indices (NDVI, MNDWI, SAVI, NDBI) were calculated in order to identify land cover classes. Both 1998 and 2020 satellite images were classified broadly into six classes namely agriculture, built-up, dense forest, open forest, scrub and waterbody. Using high resolution google earth satellite images and visual interpretation, overall accuracy assessment was performed. For land cover/use change analysis, these images were imported to GIS platform. Landscape configuration was observed by calculating various landscape metrices Images. It was observed that scrub land area had increased from 11 % to 14 % but a decrease in agriculture by 4.65 %. The increased value of NP, PD, PLAND, LPI and decrease in AI landscape indices shows that land fragmentation had increased since 1998. The most fragmented classes were scrub (PD - 3.32 to 5.18) and open forest (PD - 3.57 to 5.07). Decrease in AI for open forest, agriculture, built-up indicated that more fragmented patches of these classes were present. The result confirmed increase in the fragmentation of landscape from 1998 onwards. Keywords: GIS, LULC, landscape metrics, Remote Sensing


Land use/Land cover (LU/LC) change analysis is the present-day challenging task for the researchers in defining the environmental change across the world in the field of remote sensing and GIS (Geographic Information System). This paper analyzes the LU/LC changes between the years 2009 and 2019 in the region of Javadi Hills located in Tamil Nadu, India. Images from the Indian remote sensing satellite Resourcesat-1 LISS III and American earth observation satellite Landsat-8 were used for analyzing the LU/LC change for the study area. In this work, the classification was performed by using the hybrid approach of unsupervised and supervised classifiers. The classified LU/LC map for the study area defines forest and non-forest covered region. The key objective of this work was to identify the percentage of LU/LC change occurred in our study area for the years 2009 to 2014 and 2014 to 2019. Observing and examining the changes occurred in the study area provides a clear view to the land resources management to take effective measures in protecting the environment.


2021 ◽  
Vol 13 (15) ◽  
pp. 3032
Author(s):  
Debbie A. Chamberlain ◽  
Stuart R. Phinn ◽  
Hugh P. Possingham

Wetlands are one of the most biologically productive ecosystems. Wetland ecosystem services, ranging from provision of food security to climate change mitigation, are enormous, far outweighing those of dryland ecosystems per hectare. However, land use change and water regulation infrastructure have reduced connectivity in many river systems and with floodplain and estuarine wetlands. Mangrove forests are critical communities for carbon uptake and storage, pollution control and detoxification, and regulation of natural hazards. Although the clearing of mangroves in Australia is strictly regulated, Great Barrier Reef catchments have suffered landscape modifications and hydrological alterations that can kill mangroves. We used remote sensing datasets to investigate land cover change and both intra- and inter-annual seasonality in mangrove forests in a large estuarine region of Central Queensland, Australia, which encompasses a national park and Ramsar Wetland, and is adjacent to the Great Barrier Reef World Heritage site. We built a time series using spectral, auxiliary, and phenology variables with Landsat surface reflectance products, accessed in Google Earth Engine. Two land cover classes were generated (mangrove versus non-mangrove) in a Random Forest classification. Mangroves decreased by 1480 hectares (−2.31%) from 2009 to 2019. The overall classification accuracies and Kappa coefficient for 2008–2010 and 2018–2020 land cover maps were 95% and 95%, respectively. Using an NDVI-based time series we examined intra- and inter-annual seasonality with linear and harmonic regression models, and second with TIMESAT metrics of mangrove forests in three sections of our study region. Our findings suggest a relationship between mangrove growth phenology along with precipitation anomalies and severe tropical cyclone occurrence over the time series. The detection of responses to extreme events is important to improve understanding of the connections between climate, extreme weather events, and biodiversity in estuarine and mangrove ecosystems.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Can Trong Nguyen ◽  
Amnat Chidthaisong ◽  
Phan Kieu Diem ◽  
Lian-Zhi Huo

Bare soil is a critical element in the urban landscape and plays an essential role in urban environments. Yet, the separation of bare soil and other land cover types using remote sensing techniques remains a significant challenge. There are several remote sensing-based spectral indices for barren detection, but their effectiveness varies depending on land cover patterns and climate conditions. Within this research, we introduced a modified bare soil index (MBI) using shortwave infrared (SWIR) and near-infrared (NIR) wavelengths derived from Landsat 8 (OLI—Operational Land Imager). The proposed bare soil index was tested in two different bare soil patterns in Thailand and Vietnam, where there are large areas of bare soil during the agricultural fallow period, obstructing the separation between bare soil and urban areas. Bare soil extracted from the MBI achieved higher overall accuracy of about 98% and a kappa coefficient over 0.96, compared to bare soil index (BSI), normalized different bare soil index (NDBaI), and dry bare soil index (DBSI). The results also revealed that MBI considerably contributes to the accuracy of land cover classification. We suggest using the MBI for bare soil detection in tropical climatic regions.


2016 ◽  
Vol 13 (23) ◽  
pp. 6441-6469 ◽  
Author(s):  
Emlyn M. Jones ◽  
Mark E. Baird ◽  
Mathieu Mongin ◽  
John Parslow ◽  
Jenny Skerratt ◽  
...  

Abstract. Skillful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically derived relationships between IOPs and variables such as chlorophyll-a concentration (Chl a), total suspended solids (TSS) and coloured dissolved organic matter (CDOM) have been shown to have errors that can exceed 100 % of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due to the additional signal from bottom reflectance. Rather than assimilate quantities calculated using IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance (RSR). To assimilate the observed RSR, we use an in-water optical model to produce an equivalent simulated RSR and calculate the mismatch between the observed and simulated quantities to constrain the BGC model with a deterministic ensemble Kalman filter (DEnKF). The traditional assumption that simulated surface Chl a is equivalent to the remotely sensed OC3M estimate of Chl a resulted in a forecast error of approximately 75 %. We show this error can be halved by instead using simulated RSR to constrain the model via the assimilation system. When the analysis and forecast fields from the RSR-based assimilation system are compared with the non-assimilating model, a comparison against independent in situ observations of Chl a, TSS and dissolved inorganic nutrients (NO3, NH4 and DIP) showed that errors are reduced by up to 90 %. In all cases, the assimilation system improves the simulation compared to the non-assimilating model. Our approach allows for the incorporation of vast quantities of remote-sensing observations that have in the past been discarded due to shallow water and/or artefacts introduced by terrestrially derived TSS and CDOM or the lack of a calibrated regional IOP algorithm.


2016 ◽  
Author(s):  
Emlyn M. Jones ◽  
Mark E. Baird ◽  
Mathieu Mongin ◽  
John Parslow ◽  
Jenny Skerratt ◽  
...  

Abstract. Skilful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically-derived relationships between IOPs and variables such as Chlorophyll-a concentration (Chl-a), Total Suspended Solids (TSS) and Color Dissolved Organic Matter (CDOM) have been shown to have errors that can exceed 100 % of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due the additional signal from bottom reflectance. Rather than assimilate quantities calculated using error-prone IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance. The assimilation of a directly-observed quantity, in this case remote-sensing reflectance, is analogous to the assimilation of temperature brightness in Numerical Weather Prediction (NWP), or along-track sea-surface height in hydrodynamic models. To assimilate the observed reflectance, we use an in-water optical model to produce an equivalent simulated remote-sensing reflectance, and calculate the mis-match between the observed and simulated quantities to constrain the BGC model with a Deterministic Ensemble Kalman Filter (DEnKF). Using the assumption that simulated surface Chl-a is equivalent to remotely-sensed OC3M estimate of Chl-a resulted in a forecast error of approximately 75 %. Alternatively, assimilation of remote-sensing reflectance resulted in a forecast error of less than 40 %. Thus, in the coastal waters of the GBR, assimilating remote-sensing reflectance halved the forecast errors. When the analysis and forecast fields from the assimilation system are compared with the non-assimilating model, an independent comparison to in-situ observations of Chl-a, TSS, and dissolved inorganic nutrients (NO3, NH4 and DIP) show that errors are reduced by up to 90 %. In all cases, the assimilation system improves the result compared to the non-assimilating model. This approach allows for the incorporation of vast quantities of remote-sensing observations that have in the past been discarded due to shallow water and/or artefacts introduced by terrestrially-derived TSS and CDOM, or the lack of a calibrated regional IOP algorithm.


2019 ◽  
Author(s):  
Yan Liu ◽  
Caitlin McDonough MacKenzie ◽  
Richard B. Primack ◽  
Michael J. Hill ◽  
Xiaoyang Zhang ◽  
...  

Abstract. Greenup dates of the mountainous Acadia National Park, were monitored using remote sensing data (including Landsat 8 surface reflectances (at a 30 m spatial resolution) and VIIRS reflectances adjusted to a nadir view (gridded at a 500 m spatial resolution)) during the 2013–2016 growing seasons. Ground-level leaf-out monitoring in the areas alongside the north-south-oriented hiking trails on three of the park's tallest mountains (466 m, 418 m, and 380 m) was used to evaluate satellite derived greenup dates in this study. While the 30 m resolution would be expected to provide a better scale for phenology detection in this mountainous region than the 500 m resolution, the daily temporal resolution of the 500 m data would be expected to offer vastly superior monitoring of the rapid variations experienced during vegetation greenup along elevational gradients. Therefore, the greenup dates derived from the Landsat 8 Enhanced Vegetation Index (EVI) data, augmented with Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) simulated EVI values, does provide more spatial details than VIIRS data alone and agree well with field monitored leaf out dates. Satellite derived greenup dates from the 30 m of Acadia National Park vary among different elevational zones, although the date of greenup is not always the most advanced at the lowest elevation. This indicates that the spring phenology is not only determined by microclimates associated with different elevations in this mountainous area, but is also possibly affected by the species mixture, localized temperatures, and other factors in Acadia.


Sign in / Sign up

Export Citation Format

Share Document