Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef
Abstract. Skilful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically-derived relationships between IOPs and variables such as Chlorophyll-a concentration (Chl-a), Total Suspended Solids (TSS) and Color Dissolved Organic Matter (CDOM) have been shown to have errors that can exceed 100 % of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due the additional signal from bottom reflectance. Rather than assimilate quantities calculated using error-prone IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance. The assimilation of a directly-observed quantity, in this case remote-sensing reflectance, is analogous to the assimilation of temperature brightness in Numerical Weather Prediction (NWP), or along-track sea-surface height in hydrodynamic models. To assimilate the observed reflectance, we use an in-water optical model to produce an equivalent simulated remote-sensing reflectance, and calculate the mis-match between the observed and simulated quantities to constrain the BGC model with a Deterministic Ensemble Kalman Filter (DEnKF). Using the assumption that simulated surface Chl-a is equivalent to remotely-sensed OC3M estimate of Chl-a resulted in a forecast error of approximately 75 %. Alternatively, assimilation of remote-sensing reflectance resulted in a forecast error of less than 40 %. Thus, in the coastal waters of the GBR, assimilating remote-sensing reflectance halved the forecast errors. When the analysis and forecast fields from the assimilation system are compared with the non-assimilating model, an independent comparison to in-situ observations of Chl-a, TSS, and dissolved inorganic nutrients (NO3, NH4 and DIP) show that errors are reduced by up to 90 %. In all cases, the assimilation system improves the result compared to the non-assimilating model. This approach allows for the incorporation of vast quantities of remote-sensing observations that have in the past been discarded due to shallow water and/or artefacts introduced by terrestrially-derived TSS and CDOM, or the lack of a calibrated regional IOP algorithm.