scholarly journals A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images

2020 ◽  
Vol 12 (6) ◽  
pp. 1015 ◽  
Author(s):  
Kan Zeng ◽  
Yixiao Wang

Classification algorithms for automatically detecting sea surface oil spills from spaceborne Synthetic Aperture Radars (SARs) can usually be regarded as part of a three-step processing framework, which briefly includes image segmentation, feature extraction, and target classification. A Deep Convolutional Neural Network (DCNN), named the Oil Spill Convolutional Network (OSCNet), is proposed in this paper for SAR oil spill detection, which can do the latter two steps of the three-step processing framework. Based on VGG-16, the OSCNet is obtained by designing the architecture and adjusting hyperparameters with the data set of SAR dark patches. With the help of the big data set containing more than 20,000 SAR dark patches and data augmentation, the OSCNet can have as many as 12 weight layers. It is a relatively deep Deep Learning (DL) network for SAR oil spill detection. It is shown by the experiments based on the same data set that the classification performance of OSCNet has been significantly improved compared to that of traditional machine learning (ML). The accuracy, recall, and precision are improved from 92.50%, 81.40%, and 80.95% to 94.01%, 83.51%, and 85.70%, respectively. An important reason for this improvement is that the distinguishability of the features learned by OSCNet itself from the data set is significantly higher than that of the hand-crafted features needed by traditional ML algorithms. In addition, experiments show that data augmentation plays an important role in avoiding over-fitting and hence improves the classification performance. OSCNet has also been compared with other DL classifiers for SAR oil spill detection. Due to the huge differences in the data sets, only their similarities and differences are discussed at the principle level.

2020 ◽  
Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jintao Wang ◽  
Mingxia Shen ◽  
Longshen Liu ◽  
Yi Xu ◽  
Cedric Okinda

Digestive diseases are one of the common broiler diseases that significantly affect production and animal welfare in broiler breeding. Droppings examination and observation are the most precise techniques to detect the occurrence of digestive disease infections in birds. This study proposes an automated broiler digestive disease detector based on a deep Convolutional Neural Network model to classify fine-grained abnormal broiler droppings images as normal and abnormal (shape, color, water content, and shape&water). Droppings images were collected from 10,000 25-35-day-old Ross broiler birds reared in multilayer cages with automatic droppings conveyor belts. For comparative purposes, Faster R-CNN and YOLO-V3 deep Convolutional Neural Networks were developed. The performance of YOLO-V3 was improved by optimizing the anchor box. Faster R-CNN achieved 99.1% recall and 93.3% mean average precision, while YOLO-V3 achieved 88.7% recall and 84.3% mean average precision on the testing data set. The proposed detector can provide technical support for the detection of digestive diseases in broiler production by automatically and nonintrusively recognizing and classifying chicken droppings.


2020 ◽  
Vol 12 (6) ◽  
pp. 944 ◽  
Author(s):  
Jin Zhang ◽  
Hao Feng ◽  
Qingli Luo ◽  
Yu Li ◽  
Jujie Wei ◽  
...  

Oil spill detection plays an important role in marine environment protection. Quad-polarimetric Synthetic Aperture Radar (SAR) has been proved to have great potential for this task, and different SAR polarimetric features have the advantages to recognize oil spill areas from other look-alikes. In this paper we proposed an oil spill detection method based on convolutional neural network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel. Experiments were conducted on three Single Look Complex (SLC) quad-polarimetric SAR images obtained by Radarsat-2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). Several groups of polarized parameters, including H/A/Alpha decomposition, Single-Bounce Eigenvalue Relative Difference (SERD), correlation coefficients, conformity coefficients, Freeman 3-component decomposition, Yamaguchi 4-component decomposition were extracted as feature sets. Among all considered polarimetric features, Yamaguchi parameters achieved the highest performance with total Mean Intersection over Union (MIoU) of 90.5%. It is proved that the SLIC superpixel method significantly improved the oil spill classification accuracy on all the polarimetric feature sets. The classification accuracy of all kinds of targets types were improved, and the largest increase on mean MIoU of all features sets was on emulsions by 21.9%.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lei Si ◽  
Xiangxiang Xiong ◽  
Zhongbin Wang ◽  
Chao Tan

Accurate identification of the distribution of coal seam is a prerequisite for realizing intelligent mining of shearer. This paper presents a novel method for identifying coal and rock based on a deep convolutional neural network (CNN). Three regularization methods are introduced in this paper to solve the overfitting problem of CNN and speed up the convergence: dropout, weight regularization, and batch normalization. Then the coal-rock image information is enriched by means of data augmentation, which significantly improves the performance. The shearer cutting coal-rock experiment system is designed to collect more real coal-rock images, and some experiments are provided. The experiment results indicate that the network we designed has better performance in identifying the coal-rock images.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xingyu Xie ◽  
Bin Lv

Convolutional Neural Network- (CNN-) based GAN models mainly suffer from problems such as data set limitation and rendering efficiency in the segmentation and rendering of painting art. In order to solve these problems, this paper uses the improved cycle generative adversarial network (CycleGAN) to render the current image style. This method replaces the deep residual network (ResNet) of the original network generator with a dense connected convolutional network (DenseNet) and uses the perceptual loss function for adversarial training. The painting art style rendering system built in this paper is based on perceptual adversarial network (PAN) for the improved CycleGAN that suppresses the limitation of the network model on paired samples. The proposed method also improves the quality of the image generated by the artistic style of painting and further improves the stability and speeds up the network convergence speed. Experiments were conducted on the painting art style rendering system based on the proposed model. Experimental results have shown that the image style rendering method based on the perceptual adversarial error to improve the CycleGAN + PAN model can achieve better results. The PSNR value of the generated image is increased by 6.27% on average, and the SSIM values are all increased by about 10%. Therefore, the improved CycleGAN + PAN image painting art style rendering method produces better painting art style images, which has strong application value.


Sign in / Sign up

Export Citation Format

Share Document