scholarly journals Building Extraction from Airborne LiDAR Data Based on Multi-Constraints Graph Segmentation

2021 ◽  
Vol 13 (18) ◽  
pp. 3766
Author(s):  
Zhenyang Hui ◽  
Zhuoxuan Li ◽  
Penggen Cheng ◽  
Yao Yevenyo Ziggah ◽  
JunLin Fan

Building extraction from airborne Light Detection and Ranging (LiDAR) point clouds is a significant step in the process of digital urban construction. Although the existing building extraction methods perform well in simple urban environments, when encountering complicated city environments with irregular building shapes or varying building sizes, these methods cannot achieve satisfactory building extraction results. To address these challenges, a building extraction method from airborne LiDAR data based on multi-constraints graph segmentation was proposed in this paper. The proposed method mainly converted point-based building extraction into object-based building extraction through multi-constraints graph segmentation. The initial extracted building points were derived according to the spatial geometric features of different object primitives. Finally, a multi-scale progressive growth optimization method was proposed to recover some omitted building points and improve the completeness of building extraction. The proposed method was tested and validated using three datasets provided by the International Society for Photogrammetry and Remote Sensing (ISPRS). Experimental results show that the proposed method can achieve the best building extraction results. It was also found that no matter the average quality or the average F1 score, the proposed method outperformed ten other investigated building extraction methods.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


Author(s):  
Shenman Zhang ◽  
Jie Shan ◽  
Zhichao Zhang ◽  
Jixing Yan ◽  
Yaolin Hou

A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.


Author(s):  
Shenman Zhang ◽  
Jie Shan ◽  
Zhichao Zhang ◽  
Jixing Yan ◽  
Yaolin Hou

A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.


Author(s):  
A. P. Dal Poz

This paper compares the paradigms of LiDAR and aerophotogrammetry in the context of building extraction and briefly discusses a photogrammetric strategy for refining building roof polyhedrons previously extracted from LiDAR data. In general, empirical and theoretical studies have confirmed that LiDAR-based methodologies are more suitable in extracting planar roof faces and ridges of the roof, whereas the aerophotogrammetry are more suitable in extracting building roof outlines. In order to exemplify how to explore these properties, it is presented a photogrammetric method for refining 3D building roof contours extracted from airborne LiDAR data. Examples of application are provided for this refining approach.


2020 ◽  
Vol 12 (9) ◽  
pp. 1363 ◽  
Author(s):  
Li Li ◽  
Jian Yao ◽  
Jingmin Tu ◽  
Xinyi Liu ◽  
Yinxuan Li ◽  
...  

The roof plane segmentation is one of the key issues for constructing accurate three-dimensional building models from airborne light detection and ranging (LiDAR) data. Region growing is one of the most widely used methods to detect roof planes. It first selects one point or region as a seed, and then iteratively expands to neighboring points. However, region growing has two problems. The first problem is that it is hard to select the robust seed points. The other problem is that it is difficult to detect the accurate boundaries between two roof planes. In this paper, to solve these two problems, we propose a novel approach to segment the roof planes from airborne LiDAR point clouds using hierarchical clustering and boundary relabeling. For the first problem, we first extract the initial set of robust planar patches via an octree-based method, and then apply the hierarchical clustering method to iteratively merge the adjacent planar patches belonging to the same plane until the merging cost exceeds a predefined threshold. These merged planar patches are regarded as the robust seed patches for the next region growing. The coarse roof planes are generated by adding the non-planar points into the seed patches in sequence using region growing. However, the boundaries of coarse roof planes may be inaccurate. To solve this problem, namely, the second problem, we refine the boundaries between adjacent coarse planes by relabeling the boundary points. At last, we can effectively extract high-quality roof planes with smooth and accurate boundaries from airborne LiDAR data. We conducted our experiments on two datasets captured from Vaihingen and Wuhan using Leica ALS50 and Trimble Harrier 68i, respectively. The experimental results show that our proposed approach outperforms several representative approaches in both visual quality and quantitative metrics.


2019 ◽  
Vol 11 (19) ◽  
pp. 2256 ◽  
Author(s):  
Jorge Martínez Sánchez ◽  
Álvaro Váquez Álvarez ◽  
David López Vilariño ◽  
Francisco Fernández Rivera ◽  
José Carlos Cabaleiro Domínguez ◽  
...  

Over the last two decades, a wide range of applications have been developed from Light Detection and Ranging (LiDAR) point clouds. Most LiDAR-derived products require the distinction between ground and non-ground points. Because of this, ground filtering its being one of the most studied topics in the literature and robust methods are nowadays available. However, these methods have been designed to work with offline data and they are generally not well suited for real-time scenarios. Aiming to address this issue, this paper proposes an efficient method for ground filtering of airborne LiDAR data based on scan-line processing. In our proposal, an iterative 1-D spline interpolation is performed in each scan line sequentially. The final spline knots of a scan line are taken into account for the next scan line, so that valuable 2-D information is also considered without compromising computational efficiency. Points are labelled into ground and non-ground by analysing their residuals to the final spline. When tested against synthetic ground truth, the method yields a mean kappa value of 88.59% and a mean total error of 0.50%. Experiments with real data also show satisfactory results under visual inspection. Performance tests on a workstation show that the method can process up to 1 million points per second. The original implementation was ported into a low-cost development board to demonstrate its feasibility to run in embedded systems, where throughput was improved by using programmable logic hardware acceleration. Analysis shows that real-time filtering is possible in a high-end board prototype, as it can process the amount of points per second that current lightweight scanners acquire with low-energy consumption.


2019 ◽  
Vol 11 (11) ◽  
pp. 1263 ◽  
Author(s):  
Wen Xiao ◽  
Aleksandra Zaforemska ◽  
Magdalena Smigaj ◽  
Yunsheng Wang ◽  
Rachel Gaulton

Airborne lidar has been widely used for forest characterization to facilitate forest ecological and management studies. With the availability of increasingly higher point density, individual tree delineation (ITD) from airborne lidar point clouds has become a popular yet challenging topic, due to the complexity and diversity of forests. One important step of ITD is segmentation, for which various methodologies have been studied. Among them, a long proven image segmentation method, mean shift, has been applied directly onto 3D points, and has shown promising results. However, there are variations among those who implemented the algorithm in terms of the kernel shape, adaptiveness and weighting. This paper provides a detailed assessment of the mean shift algorithm for the segmentation of airborne lidar data, and the effect of crown top detection upon the validation of segmentation results. The results from three different datasets revealed that a crown-shaped kernel consistently generates better results (up to 7 percent) than other variants, whereas weighting and adaptiveness do not warrant improvements.


Sign in / Sign up

Export Citation Format

Share Document