scholarly journals Using a System-Based Monitoring Paradigm to Assess Fatigue during Submaximal Static Exercise of the Elbow Extensor Muscles

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1024
Author(s):  
Kaci E. Madden ◽  
Dragan Djurdjanovic ◽  
Ashish D. Deshpande

Current methods for evaluating fatigue separately assess intramuscular changes in individual muscles from corresponding alterations in movement output. The purpose of this study is to investigate if a system-based monitoring paradigm, which quantifies how the dynamic relationship between the activity from multiple muscles and force changes over time, produces a viable metric for assessing fatigue. Improvements made to the paradigm to facilitate online fatigue assessment are also discussed. Eight participants performed a static elbow extension task until exhaustion, while surface electromyography (sEMG) and force data were recorded. A dynamic time-series model mapped instantaneous features extracted from sEMG signals of multiple synergistic muscles to extension force. A metric, called the Freshness Similarity Index (FSI), was calculated using statistical analysis of modeling errors to reveal time-dependent changes in the dynamic model indicative of performance degradation. The FSI revealed strong, significant within-individual associations with two well-accepted measures of fatigue, maximum voluntary contraction (MVC) force (rrm=−0.86) and ratings of perceived exertion (RPE) (rrm=0.87), substantiating the viability of a system-based monitoring paradigm for assessing fatigue. These findings provide the first direct and quantitative link between a system-based performance degradation metric and traditional measures of fatigue.

2000 ◽  
Vol 44 (30) ◽  
pp. 5-441-5-444
Author(s):  
Kurt T. Hegmann ◽  
Arun Garg

Background: Little has been published on the maximum strength of the shoulder girdle as a function of varying postures. Such information may help aid in job design by better assessing the capabilities of workers. Methods: Female subjects (n=12) were required to hold a weight in place for 4 seconds in one of 6 different functional postures: 0/90 (shoulder flexion angle = 0° and included elbow angle = 90°), 30/90, 60/90, 90/120, 120/150 and 150/180. Postures and weights were chosen at random and measurements were repeated. Final weight adjustments were in increments of 0.1 lb. At least 3 minutes of rest between lifts was provided. Maximum voluntary contractions (MVCs) were required to be reproduced within 2 lbs. Dynamic lifting of the weight and holding in place MVCs (“lift and hold”), as well as only holding the weight in place MVCs (“hold only”) were assessed separately. Maximum voluntary torques were also computed and adjusted for arm weight. Ratings of perceived exertion (Borg CR-10) and pain ratings (0–10 scale) were obtained. Results: Maximum voluntary contractions varied greatly, with the strongest to weakest measurements approximating 2:1 ratios. For the 90/120 posture, lift and hold MVC was 14.6±3.0 lb. (range 9.5–19.0). The hold only MVC for 90/120 was 18.1±2.9 lb. (range 13.5–25.3). Similar variability occurred in all postures. Adjusted for arm weight, MVC for lift and hold at 90/120 was 18.1±3.3 lb, while hold only was 21.7±3.2 lb. Across all postures, hold only MVCs were greater than lift and hold MVCs by 4.3 lb. (26%). Lift and hold MVC torque at 120/150 was 217.2±39.3 in-lb. (range 157.5–266.8), while hold only was 280.6±38.0 in-lb. Across all postures, hold only maximum voluntary torques were greater than lift and hold torques by 25%. Except for the 0/90 and 150/180 postures, posture had little effect on hold only maximum voluntary torques. Borg CR-10 ratings averaged 6.6 for lift and hold and 6.9 for hold only (p>0.05). Posture had no effect on pain ratings, which averaged 0.8. Conclusions: Variability in female shoulder girdle lifting strength is substantial. Removing the lifting portion of job tasks likely substantially increases the percentage of workers capable of performing the tasks. Weakest postures are 90/120 and 120/150 and the female lift and hold MVC for those postures is 15 lb. (hold only 19 lb.). 30/90, 60/90 and 150/180 postures are equally strong; MVCs for lift and hold in those postures are 18 lb. (hold only 23 lb.). When overhead work is required, 150/180 posture appears preferable to 90/120 or 120/150. Some screening or selection process may be necessary on some jobs due to the degree of variability in strength.


Author(s):  
Anpin ‘Max» Chin ◽  
Ram R. Bishu ◽  
Susan Hallbeck

The purpose of the present study was to evaluate the applicability of the RPE (CR-10) scale for a number of physical exertions which employ only the upper limb with a variety of muscle group sizes and exertion levels. Ten female and ten male subjects performed pinch and pulling tasks in which four different muscle groups were engaged employing the finger, wrist, forearm and the whole arm. MVC (maximum voluntary contraction) exertion levels, RPE (Borg's CR-10 scale) value, and accuracy of the subjective assessment were measured. The results indicate that the accuracy of psychophysical measures are not muscle dependent although force generating capability is dependent on the muscle group involved. Female subjects were found more accurate in their perception of perceived exertion at lower levels of exertion than male subjects. It also appears that the RPE rating can be used to assess a variety of exertion levels accurately for a range of tasks, involving a range of muscle group sizes and location.


2021 ◽  
Vol 16 (1) ◽  
pp. 73-79
Author(s):  
Thomas Mullen ◽  
Craig Twist ◽  
Jamie Highton

Purpose: To examine responses to a simulated rugby league protocol designed to include more stochastic commands, and therefore require greater vigilance, than traditional team-sport simulation protocols. Methods: Eleven male university rugby players completed 2 trials (randomized and control [CON]) of a rugby league movement simulation protocol, separated by 7 to 10 d. The CON trial consisted of 48 repeated ∼115-s cycles of activity. The stochastic simulation (STOCH) was matched for the number and types of activity performed every 5.45 min in CON but included no repeated cycles of activity. Movement using GPS, heart rate, rating of perceived exertion, and Stroop test performance was assessed throughout. Maximum voluntary contraction peak torque, voluntary activation (in percentage), and global task load were assessed after exercise. Results: The mean mental demand of STOCH was higher than CON (effect size [ES] = 0.56; ±0.69). Mean sprint speed was higher in STOCH (22.5 [1.4] vs 21.6 [1.6] km·h−1, ES = 0.50; ±0.55), which was accompanied by a higher rating of perceived exertion (14.3 [1.0] vs 13.0 [1.4], ES = 0.87; ±0.67) and a greater number of errors in the Stroop test (10.3 [2.5] vs 9.3 [1.4] errors; ES = 0.65; ±0.83). Maximum voluntary contraction peak torque (CON = −48.4 [31.6] N·m and STOCH = −39.6 [36.6] N·m) and voluntary activation (CON = −8.3% [4.8%] and STOCH = −6.0% [4.1%]) was similarly reduced in both trials. Conclusions: Providing more stochastic commands, which requires greater vigilance, might alter performance and associated physiological, perceptual, and cognitive responses to team-sport simulations.


1993 ◽  
Vol 75 (6) ◽  
pp. 2450-2455 ◽  
Author(s):  
M. J. Joyner ◽  
W. Wieling

This study sought to determine whether increasing blood flow to active muscles can blunt the normal rise in muscle sympathetic nerve activity (MSNA) during heavy rhythmic forearm exercise in humans. Subjects performed 5- to 6-min exercise bouts of handgripping (30/min) at 40–50% of maximum voluntary contraction (MVC). Blood flow was increased by application of suction (50 mmHg) around the forearm. Suction increased deep venous oxygen saturation in blood draining the forearm from 34 +/- 4 to 45 +/- 4%, indicating that muscle blood flow had risen by approximately 20%. Suction had no impact on the heart rate, perceived exertion, or electromyographic responses to the handgripping. During 6 min of exercise at 50% of MVC, MSNA rose from 376 +/- 67 to 970 +/- 125 units during the control trial vs. 396 +/- 69 to 729 +/- 94 units during the suction trial, and the difference was maintained during 2 min of postexercise ischemia (P < 0.05; suction < control). Mean arterial pressure (MAP) rose from 99 +/- 4 to 129 +/- 6 mmHg during control vs. 99 +/- 4 to 126 +/- 6 mmHg during the suction trial, and these responses were only different (P < 0.05; suction < control) during the final minute of the exercise bouts. During postexercise ichemia, MAP was 122 +/- 6 mmHg after the control trial but was only 112 +/- 4 mmHg after the suction trial. These results indicate that forearm suction augmented muscle blood flow, limited the activation of chemosensitive muscle afferents, and blunted the rise in MSNA during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 11 (1) ◽  
pp. 193-200
Author(s):  
Elizabeth Saunders ◽  
Brian C. Clark ◽  
Leatha A. Clark ◽  
Dustin R. Grooms

AbstractThe purpose of this study was to quantify head motion between isometric erector spinae (ES) contraction strategies, paradigms, and intensities in the development of a neuroimaging protocol for the study of neural activity associated with trunk motor control in individuals with low back pain. Ten healthy participants completed two contraction strategies; (1) a supine upper spine (US) press and (2) a supine lower extremity (LE) press. Each contraction strategy was performed at electromyographic (EMG) contraction intensities of 30, 40, 50, and 60% of an individually determined maximum voluntary contraction (MVC) (±10% range for each respective intensity) with real-time, EMG biofeedback. A cyclic contraction paradigm was performed at 30% of MVC with US and LE contraction strategies. Inertial measurement units (IMUs) quantified head motion to determine the viability of each paradigm for neuroimaging. US vs LE hold contractions induced no differences in head motion. Hold contractions elicited significantly less head motion relative to cyclic contractions. Contraction intensity increased head motion in a linear fashion with 30% MVC having the least head motion and 60% the highest. The LE hold contraction strategy, below 50% MVC, was found to be the most viable trunk motor control neuroimaging paradigm.


2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Lucien Robinault ◽  
Aleš Holobar ◽  
Sylvain Crémoux ◽  
Usman Rashid ◽  
Imran Khan Niazi ◽  
...  

Over recent years, a growing body of research has highlighted the neural plastic effects of spinal manipulation on the central nervous system. Recently, it has been shown that spinal manipulation improved outcomes, such as maximum voluntary force and limb joint position sense, reflecting improved sensorimotor integration and processing. This study aimed to further evaluate how spinal manipulation can alter neuromuscular activity. High density electromyography (HD sEMG) signals from the tibialis anterior were recorded and decomposed in order to study motor unit changes in 14 subjects following spinal manipulation or a passive movement control session in a crossover study design. Participants were asked to produce ankle dorsiflexion at two force levels, 5% and 10% of maximum voluntary contraction (MVC), following two different patterns of force production (“ramp” and “ramp and maintain”). A significant decrease in the conduction velocity (p = 0.01) was observed during the “ramp and maintain” condition at 5% MVC after spinal manipulation. A decrease in conduction velocity suggests that spinal manipulation alters motor unit recruitment patterns with an increased recruitment of lower threshold, lower twitch torque motor units.


Author(s):  
Amrish O. Chourasia ◽  
Mary E. Sesto ◽  
Youngkyoo Jung ◽  
Robert S. Howery ◽  
Robert G. Radwin

Work place exertions may include muscle shortening (concentric) or muscle lengthening (eccentric) contractions. This study investigates the upper limb mechanical properties and magnetic resonance images (MRI) of the involved muscles following submaximal eccentric and concentric exertions. Twelve participants were randomly assigned to perform at 30° per second eccentric or concentric forearm supination exertions at 50% isometric maximum voluntary contraction (MVC) for 30 minutes. Measurement of mechanical stiffness, isometric MVC, localized discomfort and MRI supinator: extensor signal intensity ratio was done before, immediately after, 1 hour after and 24 hours after the bout of exercise. A 53% average decrease in mechanical stiffness after 1 hour was observed for the eccentric group (p< 0.05) compared to a 1% average decrease for the concentric group (p> 0.05). Edema, indicative of swelling, was observed 24 hrs after exercise, with an average increase in the MRI supinator: extensor signal intensity ratio of 36% for the eccentric group and less than 10% for the concentric group (p<0.05).


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Ilario Puglia ◽  
Michele Balsamo ◽  
Marco Vukich ◽  
Valfredo Zolesi

The study and analysis of human physiology during short- and long-duration space flights are the most valuable approach in order to evaluate the effect of microgravity on the human body and to develop possible countermeasures in prevision of future exploratory missions and Mars expeditions. Hand performances such as force output and manipulation capacity are fundamental for astronauts’ intra- and extravehicular activities. Previous studies on upper limb conducted on astronauts during short-term missions (10 days) indicated a temporary partial reduction in the handgrip maximum voluntary contraction (MVC) followed by a prompt recovery and adaptation to weightlessness during the last days of the mission. In the present study, we report on the “Crew’s Health: Investigation on Reduced Operability” (CHIRO) protocol, developed for handgrip and pinch force investigations, performed during the six months increment 7 and increment 8 (2003-2004) onboard International Space Station (ISS). We found that handgrip and pinch force performance are reduced during long-term increments in space and are not followed by adaptation during the mission, as conversely reported during short-term increment experiments. The application of protocols developed in space will be eligible to astronauts during long-term space missions and to patients affected by muscle atrophy diseases or nervous system injury on Earth.


1994 ◽  
Vol 77 (2) ◽  
pp. 987-997 ◽  
Author(s):  
I. Zijdewind ◽  
D. Kernell

In normal subjects, maximum voluntary contraction (MVC) and electrical ulnar nerve stimulation (UNS; 30-Hz bursts of 0.33 s) were systematically compared with regard to the forces generated in different directions (abduction/adduction and flexion) and at different degrees of index finger abduction. With a “resting” hand position in which there was no index finger abduction, UNS produced about one-half of the abduction force elicited by an MVC (mean ratio 51%). Qualitatively, such a discrepancy would be expected, because UNS activates two index finger muscles with opposing actions in the abduction/adduction plane of torques: the first dorsal interosseus (FDI) and the first palmar interosseus (FPI). The abduction forces produced by MVC and UNS were very sensitive to index finger abduction angle: at a maximum degree of abduction, the UNS-generated force even reversed its direction of action to adduction (with FPI dominating) and the abduction MVC declined to 37% of that in the resting hand position. Inasmuch as these declines in MVC- and UNS-generated abduction force could not be explained by a change in moment arm, the main alternative seemed to be abduction-associated alterations in FDI fiber length (analysis by previously published biomechanical data). The FDI and FPI were further compared by application of a UNS-generated fatigue test (5-min burst stimulation), with the index finger kept at a "neutral" angle, i.e., the abduction angle at which, in the unfatigued state, the forces of the FDI and FPI were in balance (zero net UNS-generated abduction/adduction force).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document