scholarly journals Matching Algorithm for 3D Point Cloud Recognition and Registration Based on Multi-Statistics Histogram Descriptors

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 417
Author(s):  
Jinlong Li ◽  
Bingren Chen ◽  
Meng Yuan ◽  
Qian Zhao ◽  
Lin Luo ◽  
...  

Establishing an effective local feature descriptor and using an accurate key point matching algorithm are two crucial tasks in recognizing and registering on the 3D point cloud. Because the descriptors need to keep enough descriptive ability against the effect of noise, occlusion, and incomplete regions in the point cloud, a suitable key point matching algorithm can get more precise matched pairs. To obtain an effective descriptor, this paper proposes a Multi-Statistics Histogram Descriptor (MSHD) that combines spatial distribution and geometric attributes features. Furthermore, based on deep learning, we developed a new key point matching algorithm that could identify more corresponding point pairs than the existing methods. Our method is evaluated based on Stanford 3D dataset and four real component point cloud dataset from the train bottom. The experimental results demonstrate the superiority of MSHD because its descriptive ability and robustness to noise and mesh resolution are greater than those of carefully selected baselines (e.g., FPFH, SHOT, RoPS, and SpinImage descriptors). Importantly, it has been confirmed that the error of rotation and translation matrix is much smaller based on our key point matching algorithm, and the precise corresponding point pairs can be captured, resulting in enhanced recognition and registration for three-dimensional surface matching.

1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


Author(s):  
Romina Dastoorian ◽  
Ahmad E. Elhabashy ◽  
Wenmeng Tian ◽  
Lee J. Wells ◽  
Jaime A. Camelio

With the latest advancements in three-dimensional (3D) measurement technologies, obtaining 3D point cloud data for inspection purposes in manufacturing is becoming more common. While 3D point cloud data allows for better inspection capabilities, their analysis is typically challenging. Especially with unstructured 3D point cloud data, containing coordinates at random locations, the challenges increase with higher levels of noise and larger volumes of data. Hence, the objective of this paper is to extend the previously developed Adaptive Generalized Likelihood Ratio (AGLR) approach to handle unstructured 3D point cloud data used for automated surface defect inspection in manufacturing. More specifically, the AGLR approach was implemented in a practical case study to inspect twenty-seven samples, each with a unique fault. These faults were designed to cover an array of possible faults having three different sizes, three different magnitudes, and located in three different locations. The results show that the AGLR approach can indeed differentiate between non-faulty and a varying range of faulty surfaces while being able to pinpoint the fault location. This work also serves as a validation for the previously developed AGLR approach in a practical scenario.


Author(s):  
L. Li ◽  
L. Pang ◽  
X. D. Zhang ◽  
H. Liu

Muti-baseLine SAR tomography can be used on 3D reconstruction of urban building based on SAR images acquired. In the near future, it is expected to become an important technical tool for urban multi-dimensional precision monitoring. For the moment,There is no effective method to verify the accuracy of tomographic SAR 3D point cloud of urban buildings. In this paper, a new method based on terrestrial Lidar 3D point cloud data to verify the accuracy of the tomographic SAR 3D point cloud data is proposed, 3D point cloud of two can be segmented into different facadeds. Then facet boundary extraction is carried out one by one, to evaluate the accuracy of tomographic SAR 3D point cloud of urban buildings. The experience select data of Pangu Plaza to analyze and compare, the result of experience show that the proposed method that evaluating the accuracy of tomographic SAR 3D point clou of urban building based on lidar 3D point cloud is validity and applicability


Author(s):  
J. Jeong ◽  
I. Lee

Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 571 ◽  
Author(s):  
Yawei Wang ◽  
Yifei Chen

In agriculture, information about the spatial distribution of plant growth is valuable for applications. Quantitative study of the characteristics of plants plays an important role in the plants’ growth and development research, and non-destructive measurement of the height of plants based on machine vision technology is one of the difficulties. We propose a methodology for three-dimensional reconstruction under growing plants by Kinect v2.0 and explored the measure growth parameters based on three-dimensional (3D) point cloud in this paper. The strategy includes three steps—firstly, preprocessing 3D point cloud data, completing the 3D plant registration through point cloud outlier filtering and surface smooth method; secondly, using the locally convex connected patches method to segment the leaves and stem from the plant model; extracting the feature boundary points from the leaf point cloud, and using the contour extraction algorithm to get the feature boundary lines; finally, calculating the length, width of the leaf by Euclidean distance, and the area of the leaf by surface integral method, measuring the height of plant using the vertical distance technology. The results show that the automatic extraction scheme of plant information is effective and the measurement accuracy meets the need of measurement standard. The established 3D plant model is the key to study the whole plant information, which reduces the inaccuracy of occlusion to the description of leaf shape and conducive to the study of the real plant growth status.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5295 ◽  
Author(s):  
Guoxiang Sun ◽  
Yongqian Ding ◽  
Xiaochan Wang ◽  
Wei Lu ◽  
Ye Sun ◽  
...  

Measurement of plant nitrogen (N), phosphorus (P), and potassium (K) levels are important for determining precise fertilization management approaches for crops cultivated in greenhouses. To accurately, rapidly, stably, and nondestructively measure the NPK levels in tomato plants, a nondestructive determination method based on multispectral three-dimensional (3D) imaging was proposed. Multiview RGB-D images and multispectral images were synchronously collected, and the plant multispectral reflectance was registered to the depth coordinates according to Fourier transform principles. Based on the Kinect sensor pose estimation and self-calibration, the unified transformation of the multiview point cloud coordinate system was realized. Finally, the iterative closest point (ICP) algorithm was used for the precise registration of multiview point clouds and the reconstruction of plant multispectral 3D point cloud models. Using the normalized grayscale similarity coefficient, the degree of spectral overlap, and the Hausdorff distance set, the accuracy of the reconstructed multispectral 3D point clouds was quantitatively evaluated, the average value was 0.9116, 0.9343 and 0.41 cm, respectively. The results indicated that the multispectral reflectance could be registered to the Kinect depth coordinates accurately based on the Fourier transform principles, the reconstruction accuracy of the multispectral 3D point cloud model met the model reconstruction needs of tomato plants. Using back-propagation artificial neural network (BPANN), support vector machine regression (SVMR), and gaussian process regression (GPR) methods, determination models for the NPK contents in tomato plants based on the reflectance characteristics of plant multispectral 3D point cloud models were separately constructed. The relative error (RE) of the N content by BPANN, SVMR and GPR prediction models were 2.27%, 7.46% and 4.03%, respectively. The RE of the P content by BPANN, SVMR and GPR prediction models were 3.32%, 8.92% and 8.41%, respectively. The RE of the K content by BPANN, SVMR and GPR prediction models were 3.27%, 5.73% and 3.32%, respectively. These models provided highly efficient and accurate measurements of the NPK contents in tomato plants. The NPK contents determination performance of these models were more stable than those of single-view models.


2015 ◽  
Vol 741 ◽  
pp. 237-240
Author(s):  
Li Lun Huang ◽  
Wen Guo Li ◽  
Qi Le Yang ◽  
Ying Chun Chen

The principle of registration of the 3D point cloud data and the current algorithms are compared, and ICP algorithm is chosen since its fast convergence speed, high precision, and simple objective function. On the basis of ICP algorithm, singular value decomposition and four-array method are analysed by programming program, and all the mathematical algorithms is transformed into programming language by Matlab software.


Author(s):  
K. Zainuddin ◽  
Z. Majid ◽  
M. F. M. Ariff ◽  
K. M. Idris ◽  
M. A. Abbas ◽  
...  

<p><strong>Abstract.</strong> This paper discusses the use of the lightweight multispectral camera to acquire three-dimensional data for rock art documentation application. The camera consists of five discrete bands, used for taking the motifs of the rock art paintings on a big structure of a cave based on the close-range photogrammetry technique. The captured images then processed using commercial structure-from-motion photogrammetry software, which automatically extracts the tie point. The extracted tie points were then used as input to generate a dense point cloud based on the multi-view stereo (MVS) and produced the multispectral 3D model, and orthophotos in a different wavelength. For comparison, the paintings and the wall surface also observed by using terrestrial laser scanner which capable of recording thousands of points in a short period of time with high accuracy. The cloud-to-cloud comparison between multispectral and TLS 3D point cloud show a sub-cm discrepancy, considering the used of the natural features as control target during 3D construction. Nevertheless, the processing also provides photorealistic orthophoto, indicates the advantages of the multispectral camera in generating dense 3D point cloud as TLS, photorealistic 3D model as RGB optic camera, and also with the multiwavelength output.</p>


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Peng Jin ◽  
Shaoli Liu ◽  
Jianhua Liu ◽  
Hao Huang ◽  
Linlin Yang ◽  
...  

AbstractIn recent years, addressing ill-posed problems by leveraging prior knowledge contained in databases on learning techniques has gained much attention. In this paper, we focus on complete three-dimensional (3D) point cloud reconstruction based on a single red-green-blue (RGB) image, a task that cannot be approached using classical reconstruction techniques. For this purpose, we used an encoder-decoder framework to encode the RGB information in latent space, and to predict the 3D structure of the considered object from different viewpoints. The individual predictions are combined to yield a common representation that is used in a module combining camera pose estimation and rendering, thereby achieving differentiability with respect to imaging process and the camera pose, and optimization of the two-dimensional prediction error of novel viewpoints. Thus, our method allows end-to-end training and does not require supervision based on additional ground-truth (GT) mask annotations or ground-truth camera pose annotations. Our evaluation of synthetic and real-world data demonstrates the robustness of our approach to appearance changes and self-occlusions, through outperformance of current state-of-the-art methods in terms of accuracy, density, and model completeness.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2225 ◽  
Author(s):  
Fei Wang ◽  
Chen Liang ◽  
Changlei Ru ◽  
Hongtai Cheng

In this paper, a novel global point cloud descriptor is proposed for reliable object recognition and pose estimation, which can be effectively applied to robot grasping operation. The viewpoint feature histogram (VFH) is widely used in three-dimensional (3D) object recognition and pose estimation in real scene obtained by depth sensor because of its recognition performance and computational efficiency. However, when the object has a mirrored structure, it is often difficult to distinguish the mirrored poses relative to the viewpoint using VFH. In order to solve this difficulty, this study presents an improved feature descriptor named orthogonal viewpoint feature histogram (OVFH), which contains two components: a surface shape component and an improved viewpoint direction component. The improved viewpoint component is calculated by the orthogonal vector of the viewpoint direction, which is obtained based on the reference frame estimated for the entire point cloud. The evaluation of OVFH using a publicly available data set indicates that it enhances the ability to distinguish between mirrored poses while ensuring object recognition performance. The proposed method uses OVFH to recognize and register objects in the database and obtains precise poses by using the iterative closest point (ICP) algorithm. The experimental results show that the proposed approach can be effectively applied to guide the robot to grasp objects with mirrored poses.


Sign in / Sign up

Export Citation Format

Share Document