scholarly journals Improving Phosphorus Use Efficiency and Optimizing Phosphorus Application Rates for Maize in the Northeast Plain of China for Sustainable Agriculture

2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.

2016 ◽  
Vol 59 (2) ◽  
pp. 59-68
Author(s):  
Imdad Ali Mahmood ◽  
Arshad Ali ◽  
Armghan Shahzad ◽  
Tariq Sultan

A two years field study according to split plot design was conducted to investigate the impactof crop residue (CR) incorporation and P application (0, 40, 80, 120 kg P2O5/ha) on P use efficiency andyield of direct seeded rice (DSR) and wheat grown under saline soil (ECe = 4.59 dS/m; pHs = 8.38;SAR = 6.57 (mmolc/L)1/2; extractable P = 4.07 mg/kg; texture = sandy clay loam), during the years 2011and 2012. Planting of DSR (with and without crop residue incorporation @ 2 tonnes/ha) were placed inmain plots and P application was in sub plots. Data on tillering, plant height, panicle length, 1000 grainweight, paddy and straw yields were collected. On an average of two years, maximum tillers (18), paniclelength (33), grain/panicle (121) and paddy yield (3.26 t/ha) were produced with P application @ 80 kgP2O5/ha along with CR incorporation. Similarly in case of wheat grown after DSR, maximum tillers (17),spike length (17), grains/panicle (66) and grain yield (3.56 t/ha) were produced with P application @ 80 kgP2O5/ha along with CR incorporation. Although, the growth and yield contributing parameters with thistreatment (80 kg P2O5/ha + CR) performed statistically equal to 120 kg P2O5/ha without CR incorporationduring both the years, but on an average of two years, grain yield of DSR and wheat was significantlysuperior (22 and 24%, respectively) than that of higher P rate (120 kg/ha) without CR. Overall, continuoustwo years CR incorporation further increased (17%) paddy yields during the follow up year of crop harvest.Higher P use efficiency and concentrations of P, K+ and Ca2+ in both DSR and wheat plant tissues wasfound where 80 kg P2O5/ha was applied along with CR incorporation or 120 kg P2O5/ha alone while Na+and Mg2+ concentration decreased with CR incorporation and increasing P rate. An increasing trend inDSR paddy and wheat grain yields was observed with increasing the rate of P application without CRincorporation, however, it was not as much as that of 80 kg P2O5/ha application with CR incorporationand found to be superior than rest of the treatments during both study years.


2020 ◽  
Vol 5 (3) ◽  
pp. 292-298
Author(s):  
Peter A. Opala ◽  
Dorcus O. Ofuyo ◽  
George D. Odhiambo

The effect of phosphorus (P) rate and crop arrangement on the performance of component crops in maize-bean intercropping systems was investigated at two sites; Malanga and Bugeng’i in western Kenya. A split plot design with five crop arrangements in the main plots i.e., one row of maize alternating with one row of beans (conventional), maize and beans planted in the same hole, two rows of maize alternating with two of beans (Mbili), sole maize and sole beans, in a factorial combination with three P rates; 0, 30, and 60 kg ha-1 in the subplots, was used. Bean yields were low (< 1 t ha-1) but they increased with increasing P rate at both sites. Response of maize to P fertilizer was however poor at Malanga mainly due to Striga weed infestation. Yields of beans did not significantly differ among crop arrangements at both sites. At Bungeng’i, there was a significant interaction between P rate and crop arrangement. At this site, the maize yield in the conventional arrangement increased with increasing P rate but for the Mbili arrangement, the grain yield from application of 30 kg P ha-1 was significantly higher than that at 0 kg P ha-1 and similar to that 60 kg P ha-1. Therefore, it is not beneficial to fertilize beyond 30 kg P ha-1 at this site with the Mbili arrangement. Intercropping was beneficial in all crop arrangements (Land equivalent ratio >1) and can therefore be practiced, except for maize and beans planted in the same hole with no P application at Bugeng’i.


2010 ◽  
Vol 113-116 ◽  
pp. 155-160
Author(s):  
Quan Lai Zhou ◽  
Mu Qiu Zhao ◽  
Cai Yan Lu ◽  
Yi Shi ◽  
Xin Chen

This study investigated the effects of different rates of phosphorus application on vertical transference of P. An aquatic brown paddy soil was filled in organic glass columns using for the leaching experiments. The results indicated that significant vertical transference was found using change of Olsen-P and CaCl2-P. The transference distance was no more than 10cm when P application rate between 200 and 800 kg P ha-1, and was more than 10cm as P application rate above 800 kg P ha-1. We obtained the threshold value of Olsen-P was 53.7 mg kg-1 by split-line model, and calculated that the threshold value of P fertilizer application rate was 382.1 kg P ha-1 by relationship of soil Olsen-P concentration and P application rate. The soil P transference increased, if P application rate was above 382.1 kg P ha-1. It would be helpful for controlling the P fertilizer amount by field to decrease P loss.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 802
Author(s):  
Saba B. Mohammed ◽  
Daniel K. Dzidzienyo ◽  
Adama Yahaya ◽  
Muhammad L. Umar ◽  
Muhammad F. Ishiyaku ◽  
...  

To ameliorate the impact of soil phosphorus (P) deficiency on cowpea, the use of P-based fertilizers is recommended. Plant zinc (Zn) is an essential nutrient required by plants in a wide range of processes, such as growth hormone production and metabolism. However, a negative association between plant Zn content and high P application has been reported in some crops. There are few reports about soil P application and plant Zn content relationship on cowpea. Thus, this study investigated the response of cowpeas to three P rates in the screenhouse (0, 1.5, and 30 mg P/kg) and field (0, 10, and 60 kg P2O5/ha) and their effects on plant P and Zn content, biomass, and grain yield. In the screenhouse, shoot and root dry weights, and shoot P and Zn content were measured. Shoot dry weight, grain yield, grain P, and Zn contents were determined from field plants. Higher rates of P led to increased shoot biomass and grain yield of the field experiment but were not associated with a significant change in shoot or grain Zn content. There was not a significant correlation between grain yield and Zn content in high soil P (p < 0.05). The effect of higher P application on reduced plant Zn contents may be genotype-dependent and could be circumvented if genotypes with high Zn content under high soil P are identified.


2021 ◽  
Author(s):  
Saba Baba Mohammed ◽  
Daniel K. Dzidzienyo ◽  
Adama Yahaya ◽  
Muhammad L. Umar ◽  
Muhammad F. Ishiyaku ◽  
...  

Abstract Background and aims Phosphorus (P) is limiting in many soils of cowpea producing areas. To ameliorate the impact of soil P deficiency, the use of P-based fertilizers is highly recommended. However, a negative association between zinc (Zn) content and high P application has been reported in some crops. There are few reports about P-Zn interaction on cowpea. Thus, in this study, the response of cowpea to the varying amounts of P and their effect on plant P and Zn content, and yield were investigated.Methods Thirty genotypes were grown at three P rates in screenhouse and field environments. In the screenhouse, shoot biomass, P and Zn content were measured at 55 days after sowing. In the field, grain yield, P, and Zn content were determined in the harvested tissues when plants reached full maturity.Results Higher rates of P in the growth media led to significantly increased shoot biomass, and grain yield but were not associated with a significant change in shoot or grain Zn content. There was not a significant correlation between grain yield and Zn content in high soil P (p < 0.05). The site regression analysis revealed that the first two principal components explained 69.76%, and 22.30% of total variance for grain yield, and 69.01% & 24.66% of total variance for Zn content.Conclusions The effect of higher P application on reduced shoot and grain Zn content may be genotype-dependent and could be circumvented if genotypes with high Zn content under higher P supply are identified and cultivated.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Pablo Andrés Barbieri ◽  
Hernán René Sainz Rozas ◽  
Fernanda Covacevich ◽  
Hernán Eduardo Echeverría

No-till (NT) affects dynamics of phosphorus (P) applied. Wheat response to P fertilization can be affected by available soil P, grain yield, placement, rate, and timing of fertilization. Furthermore, mycorrhizal associations could contribute to improving plant P uptake. Three experiments were used to evaluate P rate (0, 25, and 50 kg P ha−1) and fertilizer placement (broadcasted or deep-banded) effects in NT wheat on P recovery efficiency (PRE) yield and arbuscular mycorrhizal colonization (AMC) which was assessed in one experiment. Fertilization increased dry matter (DM) and accumulated P. Broadcasted P produced lower P accumulation than deep-banded P only at tillering. Phosphorus rate decreased PRE, and placement method did not affect it. Grain yield response was increased by P rate (857 and 1805 kg ha−1for 25 and 50 kg P ha−1, resp.) and was not affected by placement method (4774 and 5333 kg ha−1for broadcasted and deep-banded, resp.). Deep-banded P depressed root AMC compared with broadcast applications. Highest AMC in P broadcasted treatments could help to explain the lack of differences between placement methods. These results indicate that Mollisol have low P retention capacity. Therefore, broadcasted P could be used as an alternative of fertilizer management for NT wheat.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 537 ◽  
Author(s):  
Zheng ◽  
Chen ◽  
Chi ◽  
Xia ◽  
Wu ◽  
...  

Phosphorus (P) deficiency often occurs in paddy fields due to its high fixation, and low solubility and mobility in soils, especially under water stress. Available soil P and plant P uptake could be improved through the application of zeolite. However, little is known about the impact of zeolite on P uptake in rice under water stress. A two-year lysimetric experiment using a split-split plot design investigated the effects of zeolite (0 or 15 t ha−1) and P (0 or 60 kg ha−1) applications on water use, P uptake, and grain yield in rice under two irrigation management systems (continuous flooding irrigation (CF) and improved alternate wetting and drying irrigation (IAWD)). Both irrigation systems produced equivalent effective panicles and grain yield. Compared with CF, IAWD reduced water use and aboveground P uptake and improved water-use efficiency (WUE) in rice. The applications of zeolite or P alone increased grain yield, WUE, soil available P, and stem, leaf, and panicle P concentration, and aboveground P uptake, but had no significant effect on water use. The enhanced grain yield induced by zeolite was related to the increase in aboveground P uptake. The zeolite application enhanced NH4+–N retention in the topsoil and prevented NO3−–N from leaching into deeper soil layers. Moreover, Zeolite made lower rates of P fertilizer possible in paddy fields, with benefits for remaining P supplies and mitigating pollution due to excessive P. These results suggest that the combined application of zeolite and P under improved AWD regime reduced water use, improved P uptake and grain yield in rice, and alleviated environment risk.


Ekonomika APK ◽  
2021 ◽  
Vol 316 (2) ◽  
pp. 15-25
Author(s):  
Dmytro Zherlitsyn ◽  
Andrii Skrypnyk ◽  
Nataliia Klymenko ◽  
Kateryna Tuzhyk

The purpose of the article is to determine with the help of econometric and optimization methods the priority strategies of agrarian business in the field of crop production and to compare with the existing leaders in the use of innovations in the field of crop production. Research methods. The study is based on the use of econometric analysis methods to build trends in grain yield dynamics in leading countries in the use of innovative agricultural technologies and optimization methods for the study of dominant strategies used by agricultural enterprises in crop production. Research results. As a result of using the declining marginal grain yield depending on the amount of costs, which are determined by the cost of importing technology per 1 ha, the optimal cost values for both maximum yield and maximum profit. It is shown that at certain time intervals the costs of farmers were excessively high not only in terms of profit optimization but also to optimize yields. It is assumed that taking into account the latest innovation trends, agribusiness will move to a strategy of profit maximization Scientific novelty. As a result of econometric analysis it is shown that the use as a target function of yield leads to a significant increase in the variability of this indicator, while a moderate increase in yield is accompanied by significantly less variability. Quantitative indicators of the impact of climate risks on grain yields in Ukraine have been obtained, which explain approximately 50% of the variance in the grain yield indicator in Ukraine. Practical significance. It is shown that the representation of marginal yield in the form of a decreasing linear function is confirmed in practice. Further research, which in the presence of detailed information on the production processes of individual enterprises can be conducted by panel regression (observation points are spaced in space and time), can provide a more detailed picture of the efficiency of individual production components in their areas of interaction. Tabl.: 4. Figs.: 3. Refs.: 19.


2008 ◽  
Vol 43 (7) ◽  
pp. 893-901 ◽  
Author(s):  
Sidney Netto Parentoni ◽  
Claudio Lopes de Souza Júnior

The objective of this work was to determine the relative importance of phosphorus acquisition efficiency (PAE - plant P uptake per soil available P), and phosphorus internal utilization efficiency (PUTIL - grain yield per P uptake) in the P use efficiency (PUE - grain yield per soil available P), on 28 tropical maize genotypes evaluated at three low P and two high P environments. PAE was almost two times more important than PUTIL to explain the variability observed in PUE, at low P environments, and three times more important at high P environments. These results indicate that maize breeding programs, to increase PUE in these environments, should use selection index with higher weights for PAE than for PUTIL. The correlation between these two traits showed no significance at low or at high P environments, which indicates that selection in one of these traits would not affect the other. The main component of PUTIL was P quotient of utilization (grain yield per grain P) and not the P harvest index (grain P per P uptake). Selection to reduce grain P concentration should increase the quotient of utilization and consequently increase PUTIL.


2008 ◽  
Vol 15 (4) ◽  
pp. 423 ◽  
Author(s):  
I. SAARELA ◽  
H. HUHTA ◽  
P. VIRKAJÄRVI

In order to update fertilisation recommendations for Finnish silty and sandy soils, the effects of repeated phosphorus (P) fertilisation on the yields of cereals, grasses and other crops were measured at ten sites for 9 to 18 years. Results of some earlier studies were also used in examining the relationships of the yield responses to applied P and to the soil test values measured by the Finnish ammonium acetate method (PAc). Significant effects of P fertilisation were observed at all sites that had low or medium PAc values; in the case of potatoes, even at sites with fairly high values. The mean relative yield without applied P divided by yield with 60 or 45 kg P ha-1 of the ten sites was 81% (mean PAc 11.6 mg dm-3) varying from 55% at the PAc value of 4.7 mg dm-3 to 100% at the highest PAc values. In order to achieve a relative yield of 97%, which is considered the optimum for cereals and leys, the required mean annual application of P in the later parts of the experiments was 25 kg ha-1 (variation 0-42 kg ha-1). On the six soils that had low or medium PAc values (4.5-9.1 mg dm-3, mean 8.0 mg dm-3), relative yield was 97% at the P application rate of 35 kg ha-1 (variation 22-42 kg ha-1), while 11 kg P ha-1 (variation 0-25 kg ha-1) sufficed on the four soils that had higher PAc values (mean 20.8 mg dm-3, variation 11.7-35.2 mg dm-3). Reasons for the poor availability of P in silty and sandy soils were discussed.;


Sign in / Sign up

Export Citation Format

Share Document