scholarly journals Resistance of ETICS with Fire Barriers to Cyclic Hygrothermal Impact

2021 ◽  
Vol 13 (16) ◽  
pp. 9220
Author(s):  
Rosita Norvaišienė ◽  
Paweł Krause ◽  
Vincent Buhagiar ◽  
Arūnas Burlingis

The article presents the results of a set of hygrothermal experiments of an external wall insulated with an ETICS. As an add-on to previous studies, thermal insulation in the form of polystyrene with an additional horizontal strip of mineral wool was used. Laboratory tests were carried out in accordance with ETAG 004. The ETICS test rig was composed of combustible expanded polystyrene foam (EPS) and horizontal strips of noncombustible mineral wool (MW) fire barriers over windows. The physical and mechanical properties of four types of finishing renders (without an additional reinforcement mesh in base coat of the fire barriers) were analyzed across full hygrothermal cycles in a climate chamber. Temperature sensors were mounted onto different ETICS layers to collect thermal data during the weathering. The testing of ETICS regarding their hygrothermal performance revealed that there were no visible defects on any renderings and over the junctions depending on the type of used insulation materials. Results also showed that the joints of EPS and MW have approximately half of their bond strength from polystyrene strength.

2021 ◽  
Vol 2069 (1) ◽  
pp. 012031
Author(s):  
T Ghazaryan ◽  
F Tariku

Abstract Every year along with the implementation of energy-saving, energy conservation and other green energy initiatives the demand for effective, but sustainable, renewable insulation materials in the construction industry increases. It is worth mentioning that the selection of insulation materials nowadays is not limited to its cost and technical characteristics only, but health-related aspects and carbon footprint are also taken into consideration. However, there are not many insulation materials that have competitive technical characteristics, are sustainable, renewable and do not pose risk for health. Cork and cork-based materials like insulation cork boards (ICB) are of these types of materials which have unusual combination of material properties, have low to negative carbon footprint and have low to almost zero negative impact on the ecology and human health during the whole life cycle and later on. That is why with the increasing demand for sustainable, renewable and ecological materials the interest toward cork in North America is expected to increase. However, there are not so many researches performed on lightweight wall assemblies common in North America with cork insulation applications. In this paper, the hygrothermal performance of natural cork insulation used in split wall assemblies is compared against similar, commonly used mineral wool and expanded polystyrene (EPS) wall assemblies for three different Canadian climates, using WUFI hygrothermal analysis computer simulation tool. The relative performance of seven wall assemblies, with various combinations of insulation type and vapor control strategies, exposed to different moisture loads including elevated indoor humidity, air leakage and rain penetration are presented. The simulation results suggest that, in general, assemblies with cork have a slight advantage in performance against the EPS assemblies, especially when the amount of moisture affecting the assemblies is high. In most cases, assemblies with mineral wool perform better than that of with cork and EPS insulations.


2017 ◽  
Vol 52 (17) ◽  
pp. 2273-2280 ◽  
Author(s):  
Zheng Chen ◽  
Zhen Jia ◽  
Ning Yan

The influence of the layer thickness on the thermal conductivity of a sandwich structure containing an insulation material as the core layer was investigated by developing a corresponding finite element model simulating the structure. The insulation core studied included expanded polystyrene foam, polyurethane and mineral wool core. It was found that an increase in the ratio of core thickness to total surface layer thickness (shelling ratio) resulted in the decrease in the thermal conductivity of the sandwich structure. This change was significant when the shelling ratio was less than one. Regression analysis was conducted to describe the relationships among shelling ratio and thermal conductivities of the sandwich structure and each of its components. The evaluation of the thermal transmittance of the window system containing the sandwich structure used in window or other building components can be more accurate and simple.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 16
Author(s):  
Rosita Norvaisiene ◽  
Paweł Krause ◽  
Vincent Buhagiar ◽  
Arūnas Burlingis ◽  
Kestutis Miskinis

This paper is the research output of the laboratory ageing of external thermal insulation composite systems (ETICS). This was carried out in order to study the changes in properties of systems consisting of combustible and non-combustible thermal insulation materials, and four different types of finishing renders. Four types of the widely used, thin-layer facade rendering systems were subjected to hydrothermal cycles in a climate chamber in conformity with ETAG 004 guidelines. Analysis of the physical and mechanical properties (i.e., variation of temperature, water absorption, bond strength and mechanical resistance) of four types of ETICS are presented. This study indicates that there are no visible defects on any renderings over the junctions between polystyrene foam (EPS) and mineral wool (MW) materials when applied in ETICS.


2021 ◽  
pp. 0021955X2110210
Author(s):  
Alejandro E Rodríguez-Sánchez ◽  
Héctor Plascencia-Mora

Traditional modeling of mechanical energy absorption due to compressive loadings in expanded polystyrene foams involves mathematical descriptions that are derived from stress/strain continuum mechanics models. Nevertheless, most of those models are either constrained using the strain as the only variable to work at large deformation regimes and usually neglect important parameters for energy absorption properties such as the material density or the rate of the applying load. This work presents a neural-network-based approach that produces models that are capable to map the compressive stress response and energy absorption parameters of an expanded polystyrene foam by considering its deformation, compressive loading rates, and different densities. The models are trained with ground-truth data obtained in compressive tests. Two methods to select neural network architectures are also presented, one of which is based on a Design of Experiments strategy. The results show that it is possible to obtain a single artificial neural networks model that can abstract stress and energy absorption solution spaces for the conditions studied in the material. Additionally, such a model is compared with a phenomenological model, and the results show than the neural network model outperforms it in terms of prediction capabilities, since errors around 2% of experimental data were obtained. In this sense, it is demonstrated that by following the presented approach is possible to obtain a model capable to reproduce compressive polystyrene foam stress/strain data, and consequently, to simulate its energy absorption parameters.


2013 ◽  
Vol 32 (3) ◽  
pp. 193-209 ◽  
Author(s):  
Lin Jiang ◽  
Huahua Xiao ◽  
Yang Zhou ◽  
Weiguang An ◽  
Weigang Yan ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3131 ◽  
Author(s):  
Yasir Rashid ◽  
Fadi Alnaimat ◽  
Bobby Mathew

In this article, thermal performance of different waste materials and by-products of industrial processes is investigated experimentally. A geopolymer concrete block with 7.5 cm thickness and cross-sectional area of 5 × 5 cm was considered as a reference model to measure heat transmission across the two opposite surfaces while all four remnant surfaces were perfectly insulated. For all other samples, a sandwich concrete block was developed by taking two pieces of the geopolymer concrete with 2.5 cm thickness each on either side and insulation material of 2.5 cm thickness in between. The sandwich materials investigated were air cavity, expanded polystyrene foam, polyurethane foam, rubber tire, date palm, PCM-30, and PCM-42. Experimental investigations revealed that the investigated green materials and industrial by-products have comparable insulation performance with respect to the traditional insulations such as expanded polystyrene foam. It is found that polyurethane foam and date palm can reduce indoor cooling demand by 46.6% each in hot conditions while rubber tire can reduce indoor heating demand by 59.2% in cold climatic conditions at the maximum. The research results confirm and encourage the effective utilization of waste materials in building walls for reducing indoor air-conditioning demand in the extreme climatic conditions.


2017 ◽  
Vol 54 (3) ◽  
pp. 597-613 ◽  
Author(s):  
Yasmine Mosleh ◽  
Kelly Vanden Bosche ◽  
Bart Depreitere ◽  
Jos Vander Sloten ◽  
Ignaas Verpoest ◽  
...  

Polymeric foams are extensively used in applications such as packaging, sports goods and sandwich structures. Since in-service loading conditions are often multi-axial, characterisation of foams under multi-axial loading is essential. In this article, quasi-static combined shear-compression behaviour of isotropic expanded polystyrene foam and anisotropic polyethersulfone foam was studied. For this, a testing apparatus which can apply combined compression and transverse shear loads was developed. The results revealed that the shear and compression energy absorption, yield stress and stiffness of foams are dependent on deformation angle. The total energy absorption of the anisotropic polyethersulfone foam is shown to be direction dependent in contrast to isotropic expanded polystyrene. Furthermore, for similar relative density, polyethersulfone foam absorbs more energy than expanded polystyrene foam, regardless of deformation angle. This study highlights the importance of correct positioning of foam cells in anisotropic foams with respect to loading direction to maximise energy absorption capability.


Author(s):  
Adeniran Jolaade ADEALA ◽  
Olugbenga Babajide SOYEM

Expanded polystyrene (EPS) wastes are generated from industries and post-consumer products. They are non-biodegradable but are usually disposed by burning or landfilling leading to environmental pollution. The possibility of using EPS as partial replacement for fine aggregates in concrete has generated research interests in recent times. However, since the physical and mechanical properties of EPS are not like those of conventional fine aggregates, this study is focussed on the use of EPS as an additive in concrete while keeping other composition (sand and granite) constant. Expanded polystyrene was milled, the bulk density of EPS was 10.57kg/m3 and particle size distributions were determined. Engineering properties of expanded polystyrene concrete were determined in accordance with BS 8110-2:1985. The result showed that the amount of expanded polystyrene incorporated in concrete influence the properties of hardened and fresh concrete. The compressive strengths of 17.07MPa with 5 % expanded polystyrene concrete at 28 days for example can be used as a lightweight concrete for partitioning in offices. Incorporating expanded polystyrene granules in a concrete matrix can produce lightweight polystyrene aggregate concrete of various densities, compressive strengths, flexural strengths and tensile strengths. In conclusion, this reduces environmental pollution, reduction in valuable landfill space and also for sustainability in construction companies


Sign in / Sign up

Export Citation Format

Share Document