scholarly journals Binary Operations in the Unit Ball: A Differential Geometry Approach

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1178 ◽  
Author(s):  
Nikita E. Barabanov ◽  
Abraham A. Ungar

Within the framework of differential geometry, we study binary operations in the open, unit ball of the Euclidean n-space R n , n ∈ N , and discover the properties that qualify these operations to the title addition despite the fact that, in general, these binary operations are neither commutative nor associative. The binary operation of the Beltrami-Klein ball model of hyperbolic geometry, known as Einstein addition, and the binary operation of the Beltrami-Poincaré ball model of hyperbolic geometry, known as Möbius addition, determine corresponding metric tensors in the unit ball. For a variety of metric tensors, including these two, we show how binary operations can be recovered from metric tensors. We define corresponding scalar multiplications, which give rise to gyrovector spaces, and to norms in these spaces. We introduce a large set of binary operations that are algebraically equivalent to Einstein addition and satisfy a number of nice properties of this addition. For such operations we define sets of gyrolines and co-gyrolines. The sets of co-gyrolines are sets of geodesics of Riemannian manifolds with zero Gaussian curvatures. We also obtain a special binary operation in the ball, which is isomorphic to the Euclidean addition in the Euclidean n-space.

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1525 ◽  
Author(s):  
Nikita E. Barabanov ◽  
Abraham A. Ungar

We derive a large set of binary operations that are algebraically isomorphic to the binary operation of the Beltrami–Klein ball model of hyperbolic geometry, known as the Einstein addition. We prove that each of these operations gives rise to a gyrocommutative gyrogroup isomorphic to Einstein gyrogroup, and satisfies a number of nice properties of the Einstein addition. We also prove that a set of cogyrolines for the Einstein addition is the same as a set of gyrolines of another binary operation. This operation is found directly and it turns out to be commutative. The same results are obtained for the binary operation of the Beltrami–Poincare disk model, known as Möbius addition. We find a canonical representation of metric tensors of binary operations isomorphic to the Einstein addition, and a canonical representation of metric tensors defined by cogyrolines of these operations. Finally, we derive a formula for the Gaussian curvature of spaces with canonical metric tensors. We obtain necessary and sufficient conditions for the Gaussian curvature to be equal to zero.


1978 ◽  
Vol 30 (01) ◽  
pp. 22-31 ◽  
Author(s):  
Kyong T. Hahn

Furnishing the open unit ball of a complex Hilbert space with the Carathéodory-differential metric, we construct a model which plays a similar role as that of the Poincaré model for the hyperbolic geometry. In this note we study the question whether or not through a point in the model not lying on a given line there exists a unique perpendicular, and give a necessary and sufficient condition for the existence of a unique perpendicular. This enables us to divide a triangle into two right triangles. Many trigonometric identities in a general triangle are easy consequences of various identities which hold on a right triangle.


Author(s):  
Josip Globevnik
Keyword(s):  

It is shown that if V is a closed submanifold of the open unit ball of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ 1. It is also shown that if V is a closed submanifold of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ ∞.


1995 ◽  
Vol 47 (4) ◽  
pp. 673-683 ◽  
Author(s):  
R. M. Aron ◽  
B. J. Cole ◽  
T. W. Gamelin

AbstractLet 𝒳 be a complex Banach space, with open unit ball B. We consider the algebra of analytic functions on B that are weakly continuous and that are uniformly continuous with respect to the norm. We show these are precisely the analytic functions on B that extend to be weak-star continuous on the closed unit ball of 𝒳**. If 𝒳* has the approximation property, then any such function is approximable uniformly on B by finite polynomials in elements of 𝒳*. On the other hand, there exist Banach spaces for which these finite-type polynomials fail to approximate. We consider also the approximation of entire functions by finite-type polynomials. Assuming 𝒳* has the approximation property, we show that entire functions are approximable uniformly on bounded sets if and only if the spectrum of the algebra of entire functions coincides (as a point set) with 𝒳**.


1979 ◽  
Vol 31 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Frank Forelli

1.1. We will denote by B the open unit ball in Cn, and we will denote by H(B) the class of all holomorphic functions on B. LetThus N(B) is convex (and compact in the compact open topology). We think that the structure of N(B) is of interest and importance. Thus we proved in [1] that if(1.1)if(1.2)and if n≧ 2, then g is an extreme point of N(B). We will denote by E(B) the class of all extreme points of N(B). If n = 1 and if (1.2) holds, then as is well known g ∈ E(B) if and only if(1.3)


1994 ◽  
Vol 49 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Juan Ferrera ◽  
Angeles Prieto

We introduce in this paper the space of bounded holomorphic functions on the open unit ball of a Banach space endowed with the strict topology. Some good properties of this topology are obtained. As applications, we prove some results on approximation by polynomials and a description of the continuous homomorphisms.


1980 ◽  
Vol 21 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Earl Berkson ◽  
Horacio Porta

Let C be the complex plane, and U the disc |Z| < 1 in C. Cn denotes complex n-dimensional Euclidean space, <, > the inner product, and | · | the Euclidean norm in Cn;. Bn will be the open unit ball {z ∈ Cn:|z| < 1}, and Un will be the unit polydisc in Cn. For l ≤ p < ∞, p ≠ 2, Gp(Bn) (resp., Gp(Un)) will denote the group of all isometries of Hp(Bn) (resp., Hp(Un)) onto itself, where Hp(Bn) and HP(Un) are the usual Hardy spaces.


1978 ◽  
Vol 26 (1) ◽  
pp. 65-69 ◽  
Author(s):  
P. S. Chee

AbstractFor n≥2, a hypersurface in the open unit ball Bn in is constructed which satisfies the generalized Blaschke condition and is a uniqueness set for all Hp(Bn) with p>0. If n≥3, the hypersurface can be chosen to have finite area.Subject classification (Amer. Math. Soc. (MOS) 1970): primary 32 A 10.


2017 ◽  
Vol 28 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Cinzia Bisi ◽  
Caterina Stoppato

During the development of the theory of slice regular functions over the real algebra of quaternions [Formula: see text] in the last decade, some natural questions arose about slice regular functions on the open unit ball [Formula: see text] in [Formula: see text]. This work establishes several new results in this context. Along with some useful estimates for slice regular self-maps of [Formula: see text] fixing the origin, it establishes two variants of the quaternionic Schwarz–Pick lemma, specialized to maps [Formula: see text] that are not injective. These results allow a full generalization to quaternions of two theorems proven by Landau for holomorphic self-maps [Formula: see text] of the complex unit disk with [Formula: see text]. Landau had computed, in terms of [Formula: see text], a radius [Formula: see text] such that [Formula: see text] is injective at least in the disk [Formula: see text] and such that the inclusion [Formula: see text] holds. The analogous result proven here for slice regular functions [Formula: see text] allows a new approach to the study of Bloch–Landau-type properties of slice regular functions [Formula: see text].


2012 ◽  
Vol 20 (2) ◽  
pp. 159-170
Author(s):  
Lászlo L. Stachó ◽  
Wend Werner

Abstract The purpose of the following is to try to make sense of the stereo- graphic projection in a non-commutative setup. To this end, we consider the open unit ball of a ternary ring of operators, which naturally comes equipped with a non-commutative version of a hyperbolic metric and ask for a manifold onto which the open unit ball can be mapped so that one might think of this situation as providing a noncommutative analog to mapping the open disk of complex numbers onto the hyperboloid in three space, equipped with the restriction of the Minkowskian metric. We also obtain a related result on the Jordan algebra of self-adjoint operators


Sign in / Sign up

Export Citation Format

Share Document