scholarly journals Dynamics of an Eco-Epidemic Predator–Prey Model Involving Fractional Derivatives with Power-Law and Mittag–Leffler Kernel

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.

CAUCHY ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 260-269
Author(s):  
Ismail Djakaria ◽  
Muhammad Bachtiar Gaib ◽  
Resmawan Resmawan

This paper discusses the analysis of the Rosenzweig-MacArthur predator-prey model with anti-predator behavior. The analysis is started by determining the equilibrium points, existence, and conditions of the stability. Identifying the type of Hopf bifurcation by using the divergence criterion. It has shown that the model has three equilibrium points, i.e., the extinction of population equilibrium point (E0), the non-predatory equilibrium point (E1), and the co-existence equilibrium point (E2). The existence and stability of each equilibrium point can be shown by satisfying several conditions of parameters. The divergence criterion indicates the existence of the supercritical Hopf-bifurcation around the equilibrium point E2. Finally, our model's dynamics population is confirmed by our numerical simulations by using the 4th-order Runge-Kutta methods.


2020 ◽  
Vol 28 (04) ◽  
pp. 839-864
Author(s):  
UTTAM GHOSH ◽  
PRAHLAD MAJUMDAR ◽  
JAYANTA KUMAR GHOSH

The aim of this paper is to investigate the dynamical behavior of a two-species predator–prey model with Holling type IV functional response and nonlinear predator harvesting. The positivity and boundedness of the solutions of the model have been established. The considered system contains three kinds of equilibrium points. Those are the trivial equilibrium point, axial equilibrium point and the interior equilibrium points. The trivial equilibrium point is always saddle and stability of the axial equilibrium point depends on critical value of the conversion efficiency. The interior equilibrium point changes its stability through various parametric conditions. The considered system experiences different types of bifurcations such as Saddle-node bifurcation, Hopf bifurcation, Transcritical bifurcation and Bogdanov–Taken bifurcation. It is clear from the numerical analysis that the predator harvesting rate and the conversion efficiency play an important role in stability of the system.


2019 ◽  
Vol 26 (13-14) ◽  
pp. 1232-1245
Author(s):  
Miao Peng ◽  
Zhengdi Zhang

A delayed stage-structured predator–prey model with ratio-dependent Holling type III functional response is proposed and explored in this study. We discuss the positivity and the existence of equilibrium points. By choosing time delay as the bifurcation parameter and analyzing the relevant characteristic equations, the local stability of the trivial equilibrium, the predator-extinction equilibrium, and the coexistence equilibrium of the system is investigated. In accordance with the normal form method and center manifold theorem, the property analysis of Hopf bifurcation of the system is obtained. Furthermore, for the purpose of protecting the stability of such a biological system, a hybrid control method is presented to control the Hopf bifurcation. Finally, numerical examples are given to verify the theoretical findings.


AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035127
Author(s):  
Souleymanou Abbagari ◽  
Alphonse Houwe ◽  
Youssoufa Saliou ◽  
\, Douvagaï ◽  
Yu-Ming Chu ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


Sign in / Sign up

Export Citation Format

Share Document