scholarly journals Sedimentology and stratigraphy of the Middle Jurassic - Lower Cretaceous rocks of the Wollaston Forland - Kuhn Ø area, central East Greenland

1975 ◽  
Vol 75 ◽  
pp. 110-115
Author(s):  
F Surlyk ◽  
L.B Clemmensen

The present investigation was carried out in order to gain information concerning the stratigraphy and sedimentology of the Upper Jurassic and Lower Cretaceous sediments in central Bast Greenland (fig. 27). We were especially interested in the following topics: (1) To delineate sedimentary facies and interpret their depositional environment. (2) To erect a strict lithostratigraphical scheme for the sedimentary sequence. (3) To date the tectonic activity controlling the sedimentation at the Jurassic-Cretaceous boundary.

Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


2020 ◽  
Author(s):  
Kseniya Mikhailova ◽  
Victoria Ershova ◽  
Mikhail Rogov ◽  
Boris Pokrovsky ◽  
Oleg Vereshchagin

<p>Glendonites often used as paleoclimate indicator of cold near-bottom temperature, as these are calcite pseudomorphs of ikaite, a metastable calcium carbonate hexahydrate, precipitates mostly under low temperature (mainly from 0-4<sup>o</sup>C) and may be stabilized by high phosphate concentrations that occurs due to anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, sulfates and amino acid may contribute ikaite formation as well.  Therefore, glendonites-bearing host rocks frequently include glacial deposits that make them useful as a paleoclimate indicator of near-freezing temperature.</p><p>Our study is based on material collected from five wells drilled in eastern Barents Sea: Severo-Murmanskaya, Ledovaya – 1,2; Ludlovskaya – 1,2. The studied glendonites, mainly represented by relatively small rhombohedral pseudomorphs (0,5-2 cm) and rarely by stellate aggregates, collected from Middle Jurassic to Lower Cretaceous shallow marine clastic deposits. They scattered distributed throughout succession. Totally 18 samples of glendonites were studied. The age of host-bearing rocks were defined by fossils: bivalves or ammonites, microfossils or dinoflagellate. Bajocian-Bathonian glendonites were collected from Ledovaya – 1 and Ludlovskaya – 1 and 2 wells; in addition to these occurrences Middle Jurassic glendonites are known also in boreholes drilled at Shtockmanovskoe field. Numerous ‘jarrowite-like’ glendonites of the Middle Volgian (~ latest early Tithonian) age were sampled from Severo-Murmanskaya well. Unique Late Barremian glendonites were found in Ledovaya – 2 well.</p><p>δ<sup>18</sup>O values of Middle Jurassic glendonite concretions range from – 5.4 to –1.7 ‰ Vienna Pee Dee Belemnite (VPDB); for Upper Jurassic – Lower Cretaceous δ<sup>18</sup>O values range from – 4.3 to –1.6 ‰ VPDB; for Lower Cretaceous - δ<sup>18</sup>O values range from – 4.5 to –3.4 ‰ VPDB. Carbon isotope composition for Middle Jurassic glendonite concretions δ<sup>13</sup>C values range from – 33.3 to –22.6 ‰ VPDB; for Upper Jurassic – Lower Cretaceous δ<sup>13</sup>C values range from – 25.1 to –18.4 ‰ VPDB; for Lower Cretaceous - δ<sup>13</sup>C values range from – 30.1 to –25.6 ‰ VPDB.</p><p>Based on δ<sup>18</sup>O data we supposed that seawater had a strong influence on ikaite-derived calcite precipitation. Received data coincide with δ<sup>18</sup>O values reported from other Mesozoic glendonites and Quaternary glendonites formed in cold environments. Values of δ<sup>13</sup>C of glendonites are close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter. Glendonites consist of carbonates forming a number of phases which different in phosphorus and magnesium content. Mg-bearing calcium carbonate and dolomite both include framboidal pyrite, which can indicate (1) lack of strong rock transformations activity and (2) presence of sulfate-reduction bacteria in sediments.</p><p>To conclude, Mesozoic climate was generally warm and studied concretions indicate cold climate excursion in Middle Jurassic, Upper Jurassic-Early Cretaceous and Early Cretaceous.</p><p> </p><p>The study was supported by RFBR, project number 20-35-70012.</p>


1990 ◽  
Vol 148 ◽  
pp. 123-126
Author(s):  
L Stemmerik ◽  
S Piasecki

Post-Caledonian sediments in North-East Greenland between 76° and 78° 30´N are, with the exception of an outlier near Kulhøj, restricted to Store Koldewey. The sediments on Store Koldewey, believed to span the Middle Jurassic to Lower Cretaceous (Callovian to Aptian), are dominated by fine-grained sand and silt. They contain a rich macrofauna which, together with material collected for microfloral investigations, will form the basis for a detailed stratigraphy and dating of the sequence.


2004 ◽  
Vol 5 ◽  
pp. 99-112 ◽  
Author(s):  
Stefan Piasecki ◽  
John H. Callomon ◽  
Lars Stemmerik

The Jurassic of Store Koldewey comprises a Middle Jurassic succession towards the south and an Upper Jurassic succession towards the north. Both successions onlap crystalline basement and coarse sediments dominate. Three main lithostratigraphical units are recognised: the Pelion Formation, including the Spath Plateau Member, the Payer Dal Formation and the Bernbjerg Formation. Rich marine macrofaunas include Boreal ammonites and the successions are dated as Late Bathonian – Early Callovian and Late Oxfordian – Early Kimmeridgian on the basis of new collections combined with material in earlier collections. Fine-grained horizons and units have been analysed for dinoflagellate cysts and the stratigraphy of the diverse and well-preserved flora has been integrated with the Boreal ammonite stratigraphy. The dinoflagellate floras correlate with contemporaneous floras from Milne Land, Jameson Land and Hold with Hope farther to the south in East Greenland, and with Peary Land in North Greenland and Svalbard towards the north. The Middle Jurassic flora shows local variations in East Greenland whereas the Upper Jurassic flora gradually changes northwards in East Greenland. A Boreal flora occurs in Peary Land and Svalbard. The characteristic and stratigraphically important species Perisseiasphaeridium pannosum and Oligosphaeridium patulum have their northernmost occurrence on Store Koldewey, whereas Taeniophora iunctispina and Adnatosphaeridium sp. extend as far north as Peary Land. Assemblages of dinoflagellate cysts are used to characterise significant regional flooding events and extensive sequence stratigraphic units.


Author(s):  
Jørgen A. Bojesen-Koefoed

This bulletin presents a series of nine papers dealing with the succession of Upper Jurassic – Lower Cretaceous sedimentary rocks penetrated by the fully cored Blokelv-1 borehole, drilled in western Jameson Land, central East Greenland in August 2008. The borehole was drilled as the first of three boreholes that in combination were designed to provide full coverage of the Upper Jurassic – Lower Cretaceous petroleum source-rock succession in eastern Greenland. The remaining two boreholes, Rødryggen-1 and Brorson Halvø-1, were drilled on Wollaston Forland in 2009 and 2010, respectively, and the results from these boreholes will be published in a companion volume. The objectives of the drilling campaign were fulfilled, demonstrating that continuous sedimentation of oil-prone petroleum source rocks took place in eastern Greenland over a period of c. 13 million years from the Oxfordian to the Ryazanian, with the Blokelv-1 succession representing the older, Oxfordian–Volgian part of this interval. The drilling campaign was carried out as one of a number of projects within the framework of a multi-client collaborative programme between GEUS and a long list of petroleum companies entitled Petroleum Geological Studies, Services and Data in East and Northeast Greenland. This collaboration was initiated in 2007 and is ongoing at the time of writing with more than 20 participant companies, a subset of which sponsored the studies presented herein; for contractual reasons, these companies cannot be named. The GEUS–industry collaboration was initiated in recognition of the need for new and better data on many aspects of the petroleum geology of eastern Greenland prior to an anticipated licensing round of offshore North-East Greenland. The Circum-Arctic Resource Appraisal (CARA), undertaken by the United States Geological Survey (USGS), also played an important role in defining the priorities of the collaborative agreement by directing attention towards specific subjects in need of investigation. Licensing rounds in 2012 and 2013 resulted in the award of five licences. Based on the results of these activities in eastern Greenland, a large number of scientific papers have been published since 2008, and more are expected as confidentiality clauses expire. This volume is, however, the first GEUS Bulletin to be published as a direct consequence of the GEUS–industry collaboration.


1984 ◽  
Vol 147 ◽  
pp. 1-56
Author(s):  
T Birkelund ◽  
J.H Callomon ◽  
F.T Fürsich

The upper part of the jurassic to Lower Cretaceous succession of Milne Land, described in the present paper, represents an unusually complete, highly fossiliferous sequence of Kimmeridgian, Lower and Middle Volgian and poorly fossiliferous ?Lower Valanginian to Hauterivian deposits. On the basis of some 50 recorded sections the succession is described with respect to lithology and fossil content and placed within a lithostratigraphical frarnework. The Upper Callovian – Middle Volgian Kap Leslie Formation (overlying the Charcot Bugt Formation) is divided into eight members, the upper four of which are described in detail (Gråkløft Member, Krebsedal Member, Pernaryggen Member and Astartedal Member), while the Middle Volgian – Hauterivian Hartz Fjeld Formation above is divided into two members (Hennigryggen Member and Pinnadal Member). A succession of 34 ammonite faunas has been recorded from the Kimmeridgian to Middle Volgian succession of the area. The Kimmeridgian to Lower Volgian faunas match British faunas so closely that the standard zonation of Great Britain can be used. The 17 faunas of the Middle Volgian are closer to successions of northern Russia and Siberia, and the succession has been made the basis of a new regional zonation of nine standard zones for the Boreal Province. One Lower Cretaceous ammonite fauna has been recorded, having ?Early Valanginian age and uncertain affinities. The faunal horizons of Volgian ammonites from Milne Land figured by Spath (1936) in his classical monograph have been determined. Stratigraphically important species found since then have been described elsewhere (Callomon & Birkelund, 1982). The three main areas of outcrops, the Hartz Fjeld area, the Kronen area and the Bays Fjelde area, are correlated in detail on the basis of ammonite occurrences. The depositional environments and tectonic evolution of the Milne Land area are outlined. Some key sections of particular stratigraphical importance are described in an appendix.


2003 ◽  
Vol 1 ◽  
pp. 657-722 ◽  
Author(s):  
Finn Surlyk

The Late Palaeozoic – Mesozoic extensional basin complex of East Greenland contains a record of deposition during a period of Rhaetian – Early Bajocian thermal subsidence, the onset of rifting in the Late Bajocian, its growth during the Bathonian–Kimmeridgian, culmination of rifting in the Volgian – Early Ryazanian, and waning in the Late Ryazanian – Hauterivian. The area was centred over a palaeolatitude of about 45°N in the Rhaetian and drifted northwards to about 50°N in the Hauterivian. A major climate change from arid to humid subtropical conditions took place at the Norian–Rhaetian transition. Deposition was in addition governed by a long-term sea-level rise with highstands in the Toarcian–Aalenian, latest Callovian and Kimmeridgian, and lowstands in the latest Bajocian – earliest Bathonian, Middle Oxfordian and Volgian. The Rhaetian – Lower Bajocian succession is considered the upper part of a megasequence, termed J1, with its base in the upper Lower Triassic, whereas the Upper Bajocian – Hauterivian succession forms a complete, syn-rift megasequence, termed J2. The southern part of the basin complex in Jameson Land contains a relatively complete Rhaetian–Ryazanian succession and underwent only minor tilting during Middle Jurassic – earliest Cretaceous rifting. Rhaetian – Lower Jurassic deposits are absent north of Jameson Land and this region was fragmented into strongly tilted fault blocks during the protracted rift event. The syn-rift successions of the two areas accordingly show different long-term trends in sedimentary facies. In the southern area, the J2 syn-rift megasequence forms a symmetrical regressive–transgressive–regressive cycle, whereas the J2 megasequence in the northern area shows an asymmetrical, stepwise deepening trend. A total of eight tectonostratigraphic sequences are recognised in the Rhaetian–Hauterivian interval. They reflect major changes in basin configuration, drainage systems, sediment transport and distribution patterns, and in facies and depositional environments. The sequences are bounded by regional unconformities or flooding surfaces and have average durations in the order of 10 Ma. They are subdivided into conventional unconformity-bounded depositional sequences with durations ranging from tens of thousands of years, in the Milankovitch frequency band, up to several million years. Deposition was alluvial and lacustrine in the Rhaetian–Sinemurian, but almost exclusively marine during the Pliensbachian–Hauterivian time interval when a marine strait, up to 500 km wide and more than 2000 km long, developed between Greenland and Norway, connecting the Arctic Sea and the North Sea. Coal-bearing fluvial and paralic deposits occur, however, at the base of the onlapping Middle Jurassic succession in the central and northern part of the basin complex. The sedimentary development is similar to that in the Northern North Sea and on the Norwegian shelf, and East Greenland offers important onshore analogues for virtually all of the types of deeply buried Jurassic depositional systems of these areas and especially their hydrocarbon reservoirs.


2004 ◽  
Vol 5 ◽  
pp. 31-49 ◽  
Author(s):  
Peter Alsen ◽  
Finn Surlyk

A Middle – lower Upper Jurassic sandstone-dominated succession, more than 550 m thick, with mudstone intercalations in the middle part is exposed in Bjørnedal on Traill Ø, North-East Greenland. A number of ammonite assemblages have been found, mainly in the mudstones. They indicate the presence of the Lower Callovian Cadoceras apertum and C. nordenskjoeldi Chronozones. The mudstones represent northern wedges of the Fossilbjerget Formation hitherto known only from Jameson Land to the south. In Bjørnedal they interfinger with sandstones of the Pelion and Olympen Formations. The presence of the Fossilbjerget Formation in this region indicates complete drowning of the Middle Jurassic sandstone-dominated Pelion Formation during maximum Middle Jurassic transgression. A new species, Kepplerites tenuifasciculatus, is described in the appendix by J.H. Callomon. The holotype and paratype are from Jameson Land, East Greenland, but the species is also found in Bjørnedal, Traill Ø, North-East Greenland.


Sign in / Sign up

Export Citation Format

Share Document