scholarly journals Forecasting and Regulating of the Natural Organic Matter in the Volga Water Supply Source of Moscow

Author(s):  

The main regularities of water color and permanganate oxidizability transformation in the Volga water supply source of Moscow reservoir system have been found. Regularities of the natural organic matter content decrease in terms of water color and permanganate oxidizability within individual segments of the water supply system. The most intensive organic matter transformation within the system reservoirs occurs in the slow-flow Uchinsk reservoir where the color and permanganate oxidizability values maximum is observed during spring period. On the basis of the many-year observations results obtained in the water supply system water bodies a scheme of statistic forecasting of water color and oxidizability at water treatment facilities intake points with tree months lead time has been developed. The forecast is based on multiple linear regression equation linking the organic matter values in the Ivankovo reservoir tributaries and the same at the water treatment facilities at the closure link of the system (Uchinsk reservoir). The carried out comparison of the forecast results with the independent observation data shown a quite satisfactory agreement between the forecasted and observed organic matter values. A possibility to control the Volga River water color with low-color waters discharges from Vazuza reservoir was demonstrated with a simple balance model. As a result of the model calculations we obtained a nomogram enabling to compute the color decrease in a tribute to Ivankovo reservoir in dependence on the color difference between the Volga water and waters discharged from Vazuza reservoir provided we have pre-set proportion of water flow from these sources.

2021 ◽  
Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

Aggregation combined with gravitational separation is the most commonly used method to treat water globally, but it carries a significant economic and environmental burden as the chemicals used in the process (e.g., coagulants) generate ~8 million tons of metal-based sludge waste annually. To simultaneously deal with the issues of process sustainability, cost, and efficiency, we developed materials reengineered from pristine or waste fibers to serve as super-bridging agents, adsorbents, and ballast media. This study shows that these sustainable fiber-based materials considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment using a coagulant and a flocculant (~520 µm). The fiber-based materials also reduced coagulant (up to 40%) and flocculant usage (up to 60%). Moreover, the unprecedented size of flocs produced using fiber-based materials (up to ~13 times larger compared to conventional treatment) enabled easy floc removal by screening, thereby eliminating the need for a settling tank, a large and costly process unit. Our results show that fiber-based materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size (> 3000 µm), some Si-grafted and Fe-grafted fiber-based materials can be easily recovered from settled/screened sludge and reused multiple times for coagulation/flocculation. Our results also show that these materials could be used in synergy with coagulants and flocculants to improve settling in existing water treatment processes. Furthermore, these reusable materials combined with separation via screening could allow global water treatment facilities to reduce their capital and operating costs as well as their environmental footprint.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6221
Author(s):  
Jedrzej Bylka ◽  
Tomasz Mróz

The water supply system is one of the most important elements in a city. Currently, many cities struggle with a water deficit problem. Water is a commonly available resource and constitutes the majority of land cover; however, its quality, in many cases, makes it impossible to use as drinking water. To treat and distribute water, it is necessary to supply a certain amount of energy to the system. An important goal of water utility operators is to assess the energy efficiency of the processes and components. Energy assessments are usually limited to the calculation of energy dissipation (sometimes called “energy loss”). From a physical point of view, the formulation of “energy loss” is incorrect; energy in water transport systems is not consumed but only transformed (dissipated) into other, less usable forms. In the water supply process, the quality of energy—exergy (ability to convert into another form)—is consumed; hence, a new evaluation approach is needed. The motivation for this study was the fact that there are no tools for exergy evaluation of water distribution systems. A model of the exergy balances for a water distribution system was proposed, which was tested for the selected case studies of a water supply system and a water treatment station. The tool developed allows us to identify the places with the highest exergy destructions. In the analysed case studies, the highest exergy destruction results from excess pressure (3939 kWh in a water supply system and 1082 kWh in a water treatment plant). The exergy analysis is more accurate for assessing the system compared to the commonly used energy-based methods. The result can be used for assessing and planning water supply system modernisation.


Author(s):  
Manoj Kumar Karnena ◽  
Madhavi Konni ◽  
Bhavya Kavitha Dwarapureddi ◽  
Vara Saritha

Abstract: One of the several significant concerns related to water treatment plants is the transformation of natural organic matter (NOM) concerning quality and quantity due to the changing climatic conditions. The NOM consists of heterogeneous functionalized groups. Phenolic and carboxyl groups are the dominant groups that are pH-dependent and show a stronger affinity towards the metals. Properties of natural organic matter and trace elements govern the binding kinetics, influencing cations' binding to functionalized groups at lower pH. The water treatment process mechanisms like adsorption, coagulation, membrane filtration, and ion exchange efficiencies are sturdily influenced by the presence of NOM with cations and by the natural organic matter alone. The complexation among the natural organic matter and coagulants enhances the removal of NOM from the coagulation processes. The current review illustrates detailed interactions between natural organic matter and the potential impacts of cations on NOM in the water and wastewater treatment facilities.


2018 ◽  
Vol 8 (4) ◽  
pp. 37-43
Author(s):  
Alexander K. STRELKOV ◽  
SvetlanaYu. Yur'evna TEPLYKH ◽  
Pavel A. GORSHKALEV ◽  
Anastasiya A. TEPLYKH

The article shows the history of the development of water supply in Samara. The main stages of the development of the Samara water pipeline, starting from 1885 (creation of the fi rst water pipeline project) to 2011 (completion of construction and commissioning of an ultraviolet water treatment plant), are presented. The historical background of the creation of the Samara water pipeline project and the construction of the water supply system is given. It is told about the need for continuous expansion and improvement of the water supply system, as a result of which city water treatment plants, pumping and fi ltering stations, pumping stations of the second and third lifting, as well as new water lines were built. It is concluded that the construction of the Samara water pipeline is due to the rapidly growing number of residents and the developing industry in the city.


2016 ◽  
Vol 30 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Beata Malczewska

Abstract Natural organic matter (Natural Organic Matter – NOM) represents a mixture of diverse chemical structure and different properties. The humic substances constitute an important component of NOM, and they are responsible for water color and taste, also they can contribute to the formation of disinfection by-products (DBP). Therefore, removal of NOM is considered to be one of the important technological operations during water treatment. The present study evaluate the effectiveness of NOM removal from water by one of the hybrid process and the results showed that the use of this process allows to improve the efficiency of water purification and also reduces the intensity of blocking membranes. Batch adsorption tests of heated aluminum oxide particles (HAOPs) showed that the NOM removal efficiency has been between 86 to 77% at a dose 5 and 10 mg·dm−3, respectively for both tested natural water.


2016 ◽  
Vol 11 (2) ◽  
pp. 365-372
Author(s):  
Takashi Kobayashi

Maintaining a safe and reliable public water supply uses massive amounts of energy, prompting calls for energy saving measures. The Yokohama Water Works Bureau has established the goal of building a water supply system that is environmentally friendly by implementing a variety of initiatives, starting with efforts in renewable energy. These efforts have featured installing solar power and micro hydropower generation facilities at our purification plants and distribution reservoirs. The Yokohama water treatment facilities include purification plants based on gravity systems (Nishiya and Kawai plants) and pumped systems (Kosuzume plant). As the purification plants employing gravity systems place a smaller load on the environment, we use them as effectively as we can. When it was time to refurbish the distribution pumps, we reviewed the pump control system and identified initiatives for reducing pumped system power consumption.


Sign in / Sign up

Export Citation Format

Share Document