scholarly journals 3D Finite Element Modeling and Simulation of Friction Drilling Process

Friction drilling is an advanced drilling process in which that can be utilize the heat produced between the workpiece and rotating drilling tool bit to soften the work material and producing a hole on it. In this investigation our interest is to choose work material is Al 7075-T351 to analyze the stress, strain, temperature and work material deformation in friction drilling. Al 7075-T351 square-tube materials were drilled on a computer numerical control (CNC) machine centre by friction drilling has analyzed at different rotational speed and feed rate through controlled operation tests. The temperatures in work piece and tool were more in Friction drilling. Simulation has required perceiving the material flow, stresses, temperatures, and strains. Those are tough to quantify experimentally through friction drilling. In this study, CATIA is used to design the tool model and the software which is used to simulate the performance of friction drilling is DEFORM-3D and effect of tool material speed and feed rate on shape of bushing formed is observed. Taguchi’s technique L9 Orthogonal Array was used to analyze the optimum values. Signal to noise ratios also administered for optimization of parameters.

2020 ◽  
Vol 13 ◽  
Author(s):  
Mathew Alphonse ◽  
Bupesh Raja V.K ◽  
Palanikumar K.

Abstract:: The objective of this study is to carry out a literature review on the effect of friction drilling parameters on the mechanical and metallurgical properties of materials. The friction drilling process uses heat generated by friction in between work piece and tool. In a single step tool penetrates into work material forming a circular hole and forms bushing without generating chips. Bushing acts as structural scaffold and guide to assemble sheet metal parts without need for separate threaded parts. This review focus on the basics of friction drilling, advantages, applications, metallurgical and mechanical properties of the tool and materials. Tools reviewed in this research are High speed steel (HSS) and AISI H13 chromium hot work steel. The study observes that coated friction drilling tool life is better than uncoated friction drilling tool. At higher spindle speed and feed rate good quality hole is produced with maximum bushing height and better surface finish.


Author(s):  
Rau´l M. del Toro ◽  
Michael C. Schmittdiel ◽  
Rodolfo E. Haber-Guerra ◽  
Rodolfo Haber-Haber

A simple, fast, network-based experimental procedure for identifying the dynamics of the high-performance drilling (HPD) process is proposed and successfully applied. This identification technique utilizes a single-input (feed rate), single-output (resultant force) system with a dual step input function. The model contains the delays of both the network architecture (a PROFIBUS type network) and the dead time related with the plant dynamic itself. Classical identification techniques are used to obtain first order, second order, and third order models on the basis of the recorded input/output data. The developed models relate the dynamic behavior of resultant force versus commanded feed rate in HPD. Model validation is performed through error-based performance indices and correlation analyses. Experimental verification is performed using two different work piece materials. The models match perfectly with real-time force behavior in drilling operations and are easily integrated with many control strategies. Furthermore, these results demonstrate that the HPD process is somewhat non-linear with a remarkable difference in gain due to work piece material; however, the dynamic behavior does not change significantly.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5133-5147
Author(s):  
Hüseyin Pelit ◽  
Mustafa Korkmaz ◽  
Mehmet Budakçı

The effects of different machining parameters on surface roughness values of thermally treated pine, beech, and linden woods cut in a computer numerical control (CNC) router machine were examined. Wood specimens were thermally treated at 170, 190, and 210 °C for 2 h. Then, specimens were cut in the radial and tangential directions with three different spindle speeds (12000, 15000, and 18000 rpm) and three different feed rates (3000, 4000, and 6000 mm/min) using two different end mill tools (spiral and straight) on the CNC machine. The end mill type significantly affected the roughness values of the untreated and thermally treated specimens in both directions. Lower roughness values were found in the specimens (especially pine) machined with the straight end mill compared to those machined with the spiral end mill. Roughness generally decreased in the thermally treated specimens. However, thermal treatment temperature did not have a notable effect on roughness. As the spindle speed increased, the roughness values of all specimens decreased. In contrast, as the feed rate increased, the roughness values increased. Therefore, the end mill type, feed rate, and spindle speed were the most influential parameters on the roughness.


Author(s):  
Vishnu Vardhan Chandrasekaran ◽  
Lewis N. Payton

The current study focuses on building a 2-Dimensional finite element model to simulate the orthogonal machining process under a dry machining environment in a commercially available FEA solver LS DYNA. One of the key objectives of this thesis is to carefully document the use of LS Dyna to model metal cutting, allowing other researchers to more quickly build on this work. Actual force data is obtained using an Orthogonal Tube Turning apparatus that has been statistically validated to an accuracy of 99+%. The work material used in this study is Aluminum 6061-T6 alloy. The tool material is tool steel, which is modeled as a rigid body. A Plastic Kinematic Material Hardening model is used to define the work material. Chip formation is based on the effective failure plastic strain. A constant coefficient of friction between the tool and work piece is used, obtained from the actual experimental results. The simulation is carried out with the same constant velocity, different rake angles and depth cuts as in the real world experiment. The cutting force and thrust force values obtained for each combination of rake angle and cut depth are validated against the experimental data obtained at Auburn University. The resulting model is considered valid enough to use for sensitivity analysis of the metal cutting process in aluminum alloy 6061-T6 in the university environment. The model is available publicly to any university from a website provided.


2013 ◽  
Vol 377 ◽  
pp. 117-122 ◽  
Author(s):  
Kuswara Setiawan ◽  
Sihar Tigor Benjamin Tambunan ◽  
Pram Eliyah Yuliana

Acrylic is easy to machine. In addition to the advantages derived from the use of mill Computer Numerical Control (CNC) machine on acrylic sheet, there are at least two serious problems that need attention especially in cutting a small part with many vertices. These problems are the presence of excessive heat due to friction between the cutting tool with acrylic sheet on high RPM of spindle rotation, and soft acrylic flakes trapped in crevices of the cutting tools’flute.Generally, the cutting process using a mill CNC machine often is a practice of trial and error. At least nine basic technical parameters need to be optimized. The effectiveness of the parameter values are determined by observing and measuring the actual cutting time using mill CNC machine at given parameter settings, surface texture quality, the level of clarity of the cuts, characteristics of chip formation, and edge roughness.The experimental results showed that the adhesion of acrylic sheet and cutting tools is relatively low. However, the heat of cutting tool due to high spindle rotation, low feed rate, and relatively low melting point of acrylic, tend to form very small, soft, and hot flakes. The acrylic chips have great potential entering the crevices of cutting tools’ flutes, and reducing the cutting power significantly. In other condition, the cutting tool could even be broken if feed rate is too high. Some technical values of these parameters are recommended to obtain optimal CNC based cutting operation and surface quality on acrylic sheet.


Author(s):  
Samadhan Suresh Mule

Abstract: Friction drilling is a novel hole-making method that can be performed on thin-walled sheets. In recent years of study, the thrust force and torque under numerous process conditions were performed to demonstrate the benefits. In recent years of study, the thrust force and torque under various process conditions were performed to demonstrate the benefits. Our objective is to review the behavior of the material with the use of friction drilling by variation of thickness, Spindle speed, and feed rate. Our objective is to study the behavior of the material with the use of friction drilling by variation of thickness, Spindle speed, and feed rate. The friction between a rapid rotating conical tool and a sheet metal workpiece generates heat to soften and displace the metal to form a whole. Friction drilling is a non-traditional hole-making process in which a conical rotating tool is applied to penetrate the workpiece and make the outlet in a single step, without generating chips. the process relies on the heat generated thanks to the resistance force between tool and workpiece, to soften, penetrate and deform the work material into a bushing shape. Generally, friction drilling is applied to thin-walled materials owing to increasing connection length and clamping strength. The generated resistance heat cause softening piece of work material, increase its ductility, and providing it to flow, that extruded onto both the front and back sides of the holes. Keywords: Friction Drilling, Conical Tool, Material Displace, Temperature, Hardness & Thickness.


2007 ◽  
Vol 129 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Scott F. Miller ◽  
Albert J. Shih

Friction drilling uses a rotating conical tool to penetrate the workpiece and create a bushing in a single step without generating chips. This research investigates the three-dimensional (3D) finite element modeling (FEM) of large plastic strain and high-temperature work-material deformation in friction drilling. The explicit FEM code with temperature-dependent mechanical and thermal properties, as well as the adaptive meshing, element deletion, and mass scaling three FEM techniques necessary to enable the convergence of solution, is applied. An inverse method to match the measured and modeling thrust force determines a coefficient of friction of 0.7 in this study. The model is validated by comparing the thrust force, torque, and temperature to experimental measurements with reasonable accuracy. The FEM results show that the peak temperature of the workpiece approaches the work-material solidus temperature. Distributions of plastic strain, temperature, stress, and deformation demonstrate the thermomechanical behavior of the workpiece and advantages of 3D FEM to study of work-material deformation in friction drilling.


2018 ◽  
Vol 7 (2) ◽  
pp. 276
Author(s):  
A. Agarwal ◽  
M.T Letsatsi ◽  
O.M. Seretse ◽  
R. Marumo

This study investigated the use of tungsten carbide tool and high speed steel (HSS) tool when machining aluminum and mild steel. The parameters such as feed and speed of rotation were varied in order to observe their effect on machining operation. The experiments were performed without a coolant. FLIR thermo Cam P60 and Infra-Red Camera were used to record the observations. The highest temperature were recorded when feed rate was 2 mm. A comparison of experiments shows that HSS tooling produced high temperatures when machining mild steel. At 625 rev/min HSS failed when cutting mild steel at 2 mm feed rate. It was generally observed that temperatures generated between a tool and work piece is a function of feed rate, speed of rotation and tool material. These observations can aid the selection of a tool before a machining operation.


2020 ◽  
Vol 402 ◽  
pp. 125-130
Author(s):  
Muhammad Tadjuddin ◽  
Suhaeri ◽  
Muhammad Dirhamsyah ◽  
Aulia Udink ◽  
Fatur Rahmatsyah

The micro-drill is one of the manufacturing processes that is developing, especially in the electronics, aerospace, pharmaceutical, and automotive industries. This paper describes the results of the high-speed microdrill process in stainless steel. The drilling process is used to make the micro screen. The cutting tool material is tungsten carbide with a diameter of 0.2 mm. Drilling holes arranged in a honeycomb configuration. The machining parameters used are spindle speed of 20,000 rpm, 22,000 rpm, 24,000 rpm, and feed rate of 1 mm/min, 1.5 mm/min, 2 mm/min. Micro-drilling holes are visually analyzed using a Scanning Electron Microscope (SEM) to measure the accuracy of the hole dimensions. The results of the machining process found that the most significant deviation of the hole dimension size with a value of 0.276 mm occurred at a spindle speed of 20,000 rpm with a feed of 1 mm/min. While the deviation of the smallest hole size with a value of 0.2019 mm occurred at a spindle speed of 24,000 rpm with a feed of 2 mm/min, these results conclude that the accuracy of the hole dimensions will increase in proportion to the increase in spindle speed and feeding.


Sign in / Sign up

Export Citation Format

Share Document