scholarly journals Transfer Learning Strategies for Anomaly Detection in IoT Vibration Data

Author(s):  
Clemens Heistracher ◽  
Anahid Jalali ◽  
Indu Strobl ◽  
Axel Suendermann ◽  
Sebastian Meixner ◽  
...  

<div>Abstract—An increasing number of industrial assets are equipped with IoT sensor platforms and the industry now expects data-driven maintenance strategies with minimal deployment costs. However, gathering labeled training data for supervised tasks such as anomaly detection is costly and often difficult to implement in operational environments. Therefore, this work aims to design and implement a solution that reduces the required amount of data for training anomaly classification models on time series sensor data and thereby brings down the overall deployment effort of IoT anomaly detection sensors. We set up several in-lab experiments using three peristaltic pumps and investigated approaches for transferring trained anomaly detection models across assets of the same type. Our experiments achieved promising effectiveness and provide initial evidence that transfer learning could be a suitable strategy for using pretrained anomaly classification models across industrial assets of the same type with minimal prior labeling and training effort. This work could serve as a starting point for more general, pretrained sensor data embeddings, applicable to a wide range of assets.</div>

2021 ◽  
Author(s):  
Clemens Heistracher ◽  
Anahid Jalali ◽  
Indu Strobl ◽  
Axel Suendermann ◽  
Sebastian Meixner ◽  
...  

<div>Abstract—An increasing number of industrial assets are equipped with IoT sensor platforms and the industry now expects data-driven maintenance strategies with minimal deployment costs. However, gathering labeled training data for supervised tasks such as anomaly detection is costly and often difficult to implement in operational environments. Therefore, this work aims to design and implement a solution that reduces the required amount of data for training anomaly classification models on time series sensor data and thereby brings down the overall deployment effort of IoT anomaly detection sensors. We set up several in-lab experiments using three peristaltic pumps and investigated approaches for transferring trained anomaly detection models across assets of the same type. Our experiments achieved promising effectiveness and provide initial evidence that transfer learning could be a suitable strategy for using pretrained anomaly classification models across industrial assets of the same type with minimal prior labeling and training effort. This work could serve as a starting point for more general, pretrained sensor data embeddings, applicable to a wide range of assets.</div>


2021 ◽  
Author(s):  
Clemens Heistracher ◽  
Anahid Jalali ◽  
Indu Strobl ◽  
Axel Suendermann ◽  
Sebastian Meixner ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2144
Author(s):  
Stefan Reitmann ◽  
Lorenzo Neumann ◽  
Bernhard Jung

Common Machine-Learning (ML) approaches for scene classification require a large amount of training data. However, for classification of depth sensor data, in contrast to image data, relatively few databases are publicly available and manual generation of semantically labeled 3D point clouds is an even more time-consuming task. To simplify the training data generation process for a wide range of domains, we have developed the BLAINDER add-on package for the open-source 3D modeling software Blender, which enables a largely automated generation of semantically annotated point-cloud data in virtual 3D environments. In this paper, we focus on classical depth-sensing techniques Light Detection and Ranging (LiDAR) and Sound Navigation and Ranging (Sonar). Within the BLAINDER add-on, different depth sensors can be loaded from presets, customized sensors can be implemented and different environmental conditions (e.g., influence of rain, dust) can be simulated. The semantically labeled data can be exported to various 2D and 3D formats and are thus optimized for different ML applications and visualizations. In addition, semantically labeled images can be exported using the rendering functionalities of Blender.


Author(s):  
Ji Zhang

A great deal of research attention has been paid to data mining on data streams in recent years. In this chapter, the authors carry out a case study of anomaly detection in large and high-dimensional network connection data streams using Stream Projected Outlier deTector (SPOT) that is proposed in Zhang et al. (2009) to detect anomalies from data streams using subspace analysis. SPOT is deployed on 1999 KDD CUP anomaly detection application. Innovative approaches for training data generation, anomaly classification, false positive reduction, and adoptive detection subspace generation are proposed in this chapter as well. Experimental results demonstrate that SPOT is effective and efficient in detecting anomalies from network data streams and outperforms existing anomaly detection methods.


2020 ◽  
Vol 1 (1) ◽  
pp. 35-42
Author(s):  
Péter Ekler ◽  
Dániel Pásztor

Összefoglalás. A mesterséges intelligencia az elmúlt években hatalmas fejlődésen ment keresztül, melynek köszönhetően ma már rengeteg különböző szakterületen megtalálható valamilyen formában, rengeteg kutatás szerves részévé vált. Ez leginkább az egyre inkább fejlődő tanulóalgoritmusoknak, illetve a Big Data környezetnek köszönhető, mely óriási mennyiségű tanítóadatot képes szolgáltatni. A cikk célja, hogy összefoglalja a technológia jelenlegi állapotát. Ismertetésre kerül a mesterséges intelligencia történelme, az alkalmazási területek egy nagyobb része, melyek központi eleme a mesterséges intelligencia. Ezek mellett rámutat a mesterséges intelligencia különböző biztonsági réseire, illetve a kiberbiztonság területén való felhasználhatóságra. A cikk a jelenlegi mesterséges intelligencia alkalmazások egy szeletét mutatja be, melyek jól illusztrálják a széles felhasználási területet. Summary. In the past years artificial intelligence has seen several improvements, which drove its usage to grow in various different areas and became the focus of many researches. This can be attributed to improvements made in the learning algorithms and Big Data techniques, which can provide tremendous amount of training. The goal of this paper is to summarize the current state of artificial intelligence. We present its history, introduce the terminology used, and show technological areas using artificial intelligence as a core part of their applications. The paper also introduces the security concerns related to artificial intelligence solutions but also highlights how the technology can be used to enhance security in different applications. Finally, we present future opportunities and possible improvements. The paper shows some general artificial intelligence applications that demonstrate the wide range usage of the technology. Many applications are built around artificial intelligence technologies and there are many services that a developer can use to achieve intelligent behavior. The foundation of different approaches is a well-designed learning algorithm, while the key to every learning algorithm is the quality of the data set that is used during the learning phase. There are applications that focus on image processing like face detection or other gesture detection to identify a person. Other solutions compare signatures while others are for object or plate number detection (for example the automatic parking system of an office building). Artificial intelligence and accurate data handling can be also used for anomaly detection in a real time system. For example, there are ongoing researches for anomaly detection at the ZalaZone autonomous car test field based on the collected sensor data. There are also more general applications like user profiling and automatic content recommendation by using behavior analysis techniques. However, the artificial intelligence technology also has security risks needed to be eliminated before applying an application publicly. One concern is the generation of fake contents. These must be detected with other algorithms that focus on small but noticeable differences. It is also essential to protect the data which is used by the learning algorithm and protect the logic flow of the solution. Network security can help to protect these applications. Artificial intelligence can also help strengthen the security of a solution as it is able to detect network anomalies and signs of a security issue. Therefore, the technology is widely used in IT security to prevent different type of attacks. As different BigData technologies, computational power, and storage capacity increase over time, there is space for improved artificial intelligence solution that can learn from large and real time data sets. The advancements in sensors can also help to give more precise data for different solutions. Finally, advanced natural language processing can help with communication between humans and computer based solutions.


2020 ◽  
Vol 12 (9) ◽  
pp. 1379 ◽  
Author(s):  
Yi-Ting Cheng ◽  
Ankit Patel ◽  
Chenglu Wen ◽  
Darcy Bullock ◽  
Ayman Habib

Lane markings are one of the essential elements of road information, which is useful for a wide range of transportation applications. Several studies have been conducted to extract lane markings through intensity thresholding of Light Detection and Ranging (LiDAR) point clouds acquired by mobile mapping systems (MMS). This paper proposes an intensity thresholding strategy using unsupervised intensity normalization and a deep learning strategy using automatically labeled training data for lane marking extraction. For comparative evaluation, original intensity thresholding and deep learning using manually established labels strategies are also implemented. A pavement surface-based assessment of lane marking extraction by the four strategies is conducted in asphalt and concrete pavement areas covered by MMS equipped with multiple LiDAR scanners. Additionally, the extracted lane markings are used for lane width estimation and reporting lane marking gaps along various highways. The normalized intensity thresholding leads to a better lane marking extraction with an F1-score of 78.9% in comparison to the original intensity thresholding with an F1-score of 72.3%. On the other hand, the deep learning model trained with automatically generated labels achieves a higher F1-score of 85.9% than the one trained on manually established labels with an F1-score of 75.1%. In concrete pavement area, the normalized intensity thresholding and both deep learning strategies obtain better lane marking extraction (i.e., lane markings along longer segments of the highway have been extracted) than the original intensity thresholding approach. For the lane width results, more estimates are observed, especially in areas with poor edge lane marking, using the two deep learning models when compared with the intensity thresholding strategies due to the higher recall rates for the former. The outcome of the proposed strategies is used to develop a framework for reporting lane marking gap regions, which can be subsequently visualized in RGB imagery to identify their cause.


Author(s):  
Ji Zhang

A great deal of research attention has been paid to data mining on data streams in recent years. In this chapter, the authors carry out a case study of anomaly detection in large and high-dimensional network connection data streams using Stream Projected Outlier deTector (SPOT) that is proposed in (Zhang et al. 2009) to detect anomalies from data streams using subspace analysis. SPOT is deployed on the 1999 KDD CUP anomaly detection application. Innovative approaches for training data generation, anomaly classification, and false positive reduction are proposed in this chapter as well. Experimental results demonstrate that SPOT is effective and efficient in detecting anomalies from network data streams and outperforms existing anomaly detection methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiwei Ji ◽  
Jiaheng Gong ◽  
Jiarui Feng

Anomalies in time series, also called “discord,” are the abnormal subsequences. The occurrence of anomalies in time series may indicate that some faults or disease will occur soon. Therefore, development of novel computational approaches for anomaly detection (discord search) in time series is of great significance for state monitoring and early warning of real-time system. Previous studies show that many algorithms were successfully developed and were used for anomaly classification, e.g., health monitoring, traffic detection, and intrusion detection. However, the anomaly detection of time series was not well studied. In this paper, we proposed a long short-term memory- (LSTM-) based anomaly detection method (LSTMAD) for discord search from univariate time series data. LSTMAD learns the structural features from normal (nonanomalous) training data and then performs anomaly detection via a statistical strategy based on the prediction error for observed data. In our experimental evaluation using public ECG datasets and real-world datasets, LSTMAD detects anomalies more accurately than other existing approaches in comparison.


2021 ◽  
Author(s):  
Ayan Chatterjee

UNSTRUCTURED Leading a sedentary lifestyle may cause numerous health problems. Therefore, sedentary lifestyle changes should be given priority to avoid severe damage. Research in eHealth can provide methods to enrich personal healthcare with Information and Communication Technologies (ICTs). An eCoach system may allow people to manage a healthy lifestyle with health state monitoring and personalized recommendations. Using machine learning (ML) techniques, this study investigated the possibility of classifying daily physical activity for adults into the following classes - sedentary, low active, active, active, highly active, and rigorous active. The daily total step count, total daily minutes of sedentary time, low physical activity (LPA), medium physical activity (MPA), and vigorous physical activity (VPA) served as input for the classification models. We first used publicly available Fitbit data to build the classification models. Second, using the transfer learning approach, we re-used the top five best-performing models on a real dataset as collected from the MOX2-5 wearable medical-grade activity sensor. We found that ensemble ExtraTreesClassifier with an estimator value of 150 outperformed other classifiers with a mean accuracy score of 99.72% for single feature and support vector classifier (SVC) with “linear” kernel outpaced other classifiers with a mean accuracy score of 99.14% for five features, for the public Fitbit datasets. To demonstrate the practical usefulness of the classifiers, we conceptualized how the classifier model can be used in an eCoach prototype system to attain personalized activity goals (e.g., stay active for the entire week). After transfer learning, K-Nearest-Neighbor (KNN) outpaced the other four classifiers for a single feature, and SVC with a “linear” kernel outdid the other four classifiers for multiple features.


2020 ◽  
Author(s):  
Yun Zhang ◽  
Ling Wang ◽  
Xinqiao Wang ◽  
Chengyun Zhang ◽  
Jiamin Ge ◽  
...  

<p><b>Abstract:</b> Effective and rapid deep learning method to predict chemical reactions contributes to the research and development of organic chemistry and drug discovery. Despite the outstanding capability of deep learning in retrosynthesis and forward synthesis, predictions based on small chemical datasets generally result in low accuracy due to an insufficiency of reaction examples. Here, we introduce a new state art of method, which integrates transfer learning with transformer model to predict the outcomes of the Baeyer-Villiger reaction which is a representative small dataset reaction. The results demonstrate that introducing transfer learning strategy markedly improves the top-1 accuracy of the transformer-transfer learning model (81.8%) over that of the transformer-baseline model (58.4%). Moreover, we further introduce data augmentation to the input reaction SMILES, which allows for better performance and improves the accuracy of the transformer-transfer learning model (86.7%). In summary, both transfer learning and data augmentation methods significantly improve the predictive performance of transformer model, which are powerful methods used in chemistry field to eliminate the restriction of limited training data.</p>


Sign in / Sign up

Export Citation Format

Share Document