LED MODULE WITH ELECTRONIC ILLUMINATION CONTROL

Author(s):  
V. Lisovenko ◽  
D. Lisovenko ◽  
O. Bazyk

Many energy saving tasks can be solved thanks to the current advances in LED technology in the production of semiconductor light sources. Modern production of solid-state LEDs guarantees high-precision compliance with the calculated design parameters of illumination devices. This opens up wide opportunities for high-precision control of the lighting parameters of a multicomponent module: light power, a directional pattern and a distribution of illumination. Today, the methodical issues of the preliminary modeling of LED illumination devices with the given parameters are fundamentally solved. There is a shift from manual calculations to computer design and need to develop and select the most effective mathematical modeling methods. The paper presents a consistent approach to the modeling of the distribution of illumination on a horizontal plane from the planar LED module, based on the Lambert type of radiation of a single point source. Simple mathematical expressions, programmed on a personal computer, are obtained. The example of a 25-LED floodlight has shown the ability of dynamic control the lighting characteristics of the module. Connecting patterns of separate LEDs or their groups allow to change the direction pattern of the lamp by the appropriate way of switching diodes with different aperture of radiation. The lighting power can be controlled within the linearity of the ampere-brightness characteristics by changing the current strength through the LED. The static selection of characteristics is controlled by the geometry of the location of discrete sources. The formation of uniform illumination of the plane is graphically illustrated. The electron-dynamic way of controlling the lighting parameters of the LED floodlight is confirmed by the inventor’s certificate.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 536
Author(s):  
Kenneth A. Goldberg ◽  
Antoine Wojdyla ◽  
Diane Bryant

New, high-coherent-flux X-ray beamlines at synchrotron and free-electron laser light sources rely on wavefront sensors to achieve and maintain optimal alignment under dynamic operating conditions. This includes feedback to adaptive X-ray optics. We describe the design and modeling of a new class of binary-amplitude reflective gratings for shearing interferometry and Hartmann wavefront sensing. Compact arrays of deeply etched gratings illuminated at glancing incidence can withstand higher power densities than transmission membranes and can be designed to operate across a broad range of photon energies with a fixed grating-to-detector distance. Coherent wave-propagation is used to study the energy bandwidth of individual elements in an array and to set the design parameters. We observe that shearing operates well over a ±10% bandwidth, while Hartmann can be extended to ±30% or more, in our configuration. We apply this methodology to the design of a wavefront sensor for a soft X-ray beamline operating from 230 eV to 1400 eV and model shearing and Hartmann tests in the presence of varying wavefront aberration types and magnitudes.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tunan Chen ◽  
Fengxiang Ma ◽  
Yue Zhao ◽  
Zhenghai Liao ◽  
Zongjia Qiu ◽  
...  

Purpose This paper aims to establish a photoacoustic detection system for SO2 using UV-LED and testify its feasibility for sensitive measurement. The work in this paper can avoid potential crossover interference in infrared (IR) range and also balance the capability and cost of feasible excitation for photoacoustic detection system. Design/methodology/approach In this experimental work, a cantilever-enhanced–based photoacoustic SO2 detection system using an ultraviolet (UV) LED light source with a light power of 4 mW as the excitation was established. Findings A feasible photoacoustic detection system for SO2 using UV-LED was established. Experimental results demonstrate that the detection limit of the system can reach the level of 0.667 ppm, which can serve as a reference for the application of PAS in insulation fault diagnosis. Originality/value This work investigated the potential of using ultraviolet photoacoustic spectroscopy to detect trace SO2, which provided an ideal replacement of infrared-laser-based detection system. In this paper, a photoacoustic detection system using LED with a low light power was established. Low light power requirement can expand the options of light sources accordingly. In this paper, the absorption characteristics of SO2 in the presented detection system and ultraviolet range were studied. And the detection limit of the presented system was given. Both of which can provide reference to SO2 detection in ambient SF6.


2018 ◽  
Vol 8 (8) ◽  
pp. 1389 ◽  
Author(s):  
Sergio Castiñeira-Ibáñez ◽  
Daniel Tarrazó-Serrano ◽  
Jose Fuster ◽  
Pilar Candelas ◽  
Constanza Rubio

Traditional acoustic lenses modulate the ultrasonic beam due to their curved surfaces and the refractive material of which they are made. In this work, a different type of acoustic lens, based on Polyadic Cantor Fractals (PCF), is presented and thoroughly analyzed. These new Polyadic Cantor Fractal Lenses (PCFLs) are completely flat and easy to build, and they present interesting modulation capabilities over the acoustic profile. The dependence of the focusing profile on the PCFL design parameters is fully characterized, and it is shown that certain design parameters provide a dynamic control, which is critical in many medical applications such as thermal ablation of tumors.


2017 ◽  
Vol 2 (3) ◽  
pp. 302-308 ◽  
Author(s):  
Salim Qadir Mohammed ◽  
Asaad M. Asaad M. Al-Hindawi

Fiber optics is an important part in the telecommunication infrastructure. Large bandwidth and low attenuation are features for the fiber optics to provide gigabit transmission. Nowadays, fiber optics are used widely in long distance communication and networking to provide the required information traffic for multimedia applications. In this paper, the optical fiber structure and the operation mechanism for multimode and single modes are analyzed. The design parameters such as core radius, numerical aperture, attenuation, dispersion and information capacity for step index and graded index fibers are studied, calculated and compared for different light sources.


2011 ◽  
Vol 128-129 ◽  
pp. 607-610
Author(s):  
Min Wang ◽  
Jie Chen ◽  
Niu Liu ◽  
Ya Wang

Mid-infrared lasers are very suitable for high-sensitive trace-gases detection for their wavelengths cover the fundamental absorption lines of most gases. Quantum-cascade (QC) lasers have been demonstrated to be ideal light sources with its special power, tuning and capability of operating in room-temperature. All these merits make it appropriate for the high resolution spectrum analysis. The absorption spectrum monitoring technology based on the QC laser pulsed operating in the room temperature, combining with the strong absorption of the gas molecule in the basic frequency, has become an effective way to monitor the trace gas with the characteristic of high sensitivity, good selectivity and fast response. In this paper, the inter-pulse spectroscopy based on a room-temperature distributed-feedback pulsed QC laser was introduced. Our approach to trace gas monitoring with QC lasers relies on short current pulses which are designed to produce even shorter light pulses. Each pulse corresponds to a single point in a spectrum. The N2O absorption spectrum centered at 2178.2cm-1was also obtained.


2015 ◽  
Vol 828-829 ◽  
pp. 62-68
Author(s):  
Khaled Abou-El-Hossein

Plastic optical components and lenses produced in mass quantities are usually manufactured using high-precision plastic injection technology. For that, high-precision plastic moulds with aluminium optical inserts made with extremely high dimension accuracy and high optical surface quality are used. Ultra-high precision single-point diamond turning have been successfully used in shaping optical mould inserts from various aluminium grades such as traditional 6061. However, extreme care should be taking when selecting machining parameters in order to produce optically valid surfaces before premature tool wear takes place especially when the machined optical materials has inadequate machining database. The current experimental study looks at the effect of cutting conditions on optical surfaces made from aluminium. The study embarks on helping establish some diamond machining database that helps engineers select the most favourable cutting parameters. The papers reports on the accuracy and surface finish quality received on an optical surface made on mould inserts from a newly developed aluminium alloy. Rapidly solidified aluminium (RSA) grades have been developed recently to address the various problems encountered when being cut by single-point diamond turning operation. The material is characterised by its extremely fine grained microstructure which helps extend the tool life and produce optical surfaces with nanometric surface finish. It is found the RSA grades can be successfully used to replace traditional optical aluminium grades when making optical surfaces. Surface finishes of as low as 10 nanometres and form accuracy of less than one micron can be achieved on RSA.


2019 ◽  
Vol 9 (19) ◽  
pp. 4093 ◽  
Author(s):  
Santiago Royo ◽  
Maria Ballesta-Garcia

Lidar imaging systems are one of the hottest topics in the optronics industry. The need to sense the surroundings of every autonomous vehicle has pushed forward a race dedicated to deciding the final solution to be implemented. However, the diversity of state-of-the-art approaches to the solution brings a large uncertainty on the decision of the dominant final solution. Furthermore, the performance data of each approach often arise from different manufacturers and developers, which usually have some interest in the dispute. Within this paper, we intend to overcome the situation by providing an introductory, neutral overview of the technology linked to lidar imaging systems for autonomous vehicles, and its current state of development. We start with the main single-point measurement principles utilized, which then are combined with different imaging strategies, also described in the paper. An overview of the features of the light sources and photodetectors specific to lidar imaging systems most frequently used in practice is also presented. Finally, a brief section on pending issues for lidar development in autonomous vehicles has been included, in order to present some of the problems which still need to be solved before implementation may be considered as final. The reader is provided with a detailed bibliography containing both relevant books and state-of-the-art papers for further progress in the subject.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Jiamin Wang ◽  
Oumar R. Barry

Abstract Uncontrollable shaking in the human wrist, caused by pathological tremor, can significantly undermine the power and accuracy in object manipulation. In this paper, the design of a tremor alleviating wrist exoskeleton (TAWE) is introduced. Unlike the works in the literature that only consider the flexion/extension (FE) motion, in this paper, we model the wrist joint as a constrained three-dimensional (3D) rotational joint accounting for the coupled FE and radial/ulnar deviation (RUD) motions. Hence TAWE, which features a six degrees-of-freedom (DOF) rigid linkage structure, aims to accurately monitor, suppress tremors, and provide light-power augmentation in both FE and RUD wrist motions. The presented study focuses on providing a fundamental understanding of the feasibility of TAWE through theoretical analyses. The analytical multibody modeling of the forearm–TAWE assembly provides insight into the necessary conditions for control, which indicates that reliable control conditions in the desired workspace can be acquired by tuning the design parameters. Nonlinear regressions are then implemented to identify the information that is crucial to the controller design from the unknown wrist kinematics. The proposed analytical model is validated numerically with V-REP and the result shows good agreement. Simulations also demonstrate the reliable performance of TAWE under controllers designed for tremor suppression and movement assistance.


Sign in / Sign up

Export Citation Format

Share Document