imaging systems
Recently Published Documents


TOTAL DOCUMENTS

3942
(FIVE YEARS 558)

H-INDEX

67
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Pei‐Jan Paul Lin ◽  
Allen R. Goode ◽  
Frank D. Corwin ◽  
Ryan F. Fisher ◽  
Stephen Balter ◽  
...  

2022 ◽  
Vol 3 ◽  
Author(s):  
Pierre-Jean Lapray ◽  
Jean-Baptiste Thomas ◽  
Ivar Farup

The visual systems found in nature rely on capturing light under different modalities, in terms of spectral sensitivities and polarization sensitivities. Numerous imaging techniques are inspired by this variety, among which, the most famous is color imaging inspired by the trichromacy theory of the human visual system. We investigate the spectral and polarimetric properties of biological imaging systems that will lead to the best performance on scene imaging through haze, i.e., dehazing. We design a benchmark experiment based on modalities inspired by several visual systems, and adapt state-of-the-art image reconstruction algorithms to those modalities. We show the difference in performance of each studied systems and discuss it in front of our methodology and the statistical relevance of our data.


2022 ◽  
Vol 14 (2) ◽  
pp. 319
Author(s):  
Tanzeel U. Rehman ◽  
Libo Zhang ◽  
Dongdong Ma ◽  
Jian Jin

Hyperspectral imaging has increasingly been used in high-throughput plant phenotyping systems. Rapid advancement in the field of phenotyping has resulted in a wide array of hyperspectral imaging systems. However, sharing the plant feature prediction models between different phenotyping facilities becomes challenging due to the differences in imaging environments and imaging sensors. Calibration transfer between imaging facilities is crucially important to cope with such changes. Spectral space adjustment methods including direct standardization (DS), its variants (PDS, DPDS) and spectral scale transformation (SST) require the standard samples to be imaged in different facilities. However, in real-world scenarios, imaging the standard samples is practically unattractive. Therefore, in this study, we presented three methods (TCA, c-PCA, and di-PLSR) to transfer the calibration models without requiring the standard samples. In order to compare the performance of proposed approaches, maize plants were imaged in two greenhouse-based HTPP systems using two pushbroom-style hyperspectral cameras covering the visible near-infrared range. We tested the proposed methods to transfer nitrogen content (N) and relative water content (RWC) calibration models. The results showed that prediction R2 increased by up to 14.50% and 42.20%, while the reduction in RMSEv was up to 74.49% and 76.72% for RWC and N, respectively. The di-PLSR achieved the best results for almost all the datasets included in this study, with TCA being second. The performance of c-PCA was not at par with the di-PLSR and TCA. Our results showed that the di-PLSR helped to recover the performance of RWC, and N models plummeted due to the differences originating from new imaging systems (sensor type, spectrograph, lens system, spatial resolution, spectral resolution, field of view, bit-depth, frame rate, and exposure time) or lighting conditions. The proposed approaches can alleviate the requirement of developing a new calibration model for a new phenotyping facility or to resort to the spectral space adjustment using the standard samples.


2022 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Zhouxiao Li ◽  
Yimin Liang ◽  
Thilo Ludwig Schenck ◽  
Konstantin Frank ◽  
Riccardo Enzo Giunta ◽  
...  

Three-dimensional surface imaging systems (3DSI) provide an effective and applicable approach for the quantification of facial morphology. Several researchers have implemented 3D techniques for nasal anthropometry; however, they only included limited classic nasal facial landmarks and parameters. In our clinical routines, we have identified a considerable number of novel facial landmarks and nasal anthropometric parameters, which could be of great benefit to personalized rhinoplasty. Our aim is to verify their reliability, thus laying the foundation for the comprehensive application of 3DSI in personalized rhinoplasty. We determined 46 facial landmarks and 57 anthropometric parameters. A total of 110 volunteers were recruited, and the intra-assessor, inter-assessor, and intra-method reliability of nasal anthropometry were assessed through 3DSI. Our results displayed the high intra-assessor reliability of MAD (0.012–0.29, 0.003–0.758 mm), REM (0.008–1.958%), TEM (0–0.06), rTEM (0.001–0.155%), and ICC (0.77–0.995); inter-assessor reliability of 0.216–1.476, 0.003–2.013 mm; 0.01–7.552%, 0–0.161, and 0.001–1.481%, 0.732–0.985, respectively; and intra-method reliability of 0.006–0.598°, 0–0.379 mm; 0 0.984%, 0–0.047, and 0–0.078%, 0.996–0.998, respectively. This study provides conclusive evidence for the high reliability of novel facial landmarks and anthropometric parameters for comprehensive nasal measurements using the 3DSI system. Considering this, the proposed landmarks and parameters could be widely used for digital planning and evaluation in personalized rhinoplasty, otorhinolaryngology, and oral and maxillofacial surgery.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Sen Gong ◽  
Hongxin Zeng ◽  
Qianyu Zhang ◽  
Chunyang Bi ◽  
Lan Wang ◽  
...  

Abstract Terahertz switch is one of the key components of future communication, radar, and imaging systems. Limited by the strong electromagnetic coupling in subwavelength scale, the traditional terahertz switch is difficult to meet the increasing application requirements. In this paper, a parallel topology terahertz meta-chip switch based on the combination of equivalent circuit theory and electromagnetic coupling is proposed. The meta-chip is realized by adjusting the density of two-dimensional electron gas of InP-HEMT, which converts the electromagnetic coupling between the microstructure and microstrips. By using the 90 nm gate length InP-HEMT process, a C-ring loaded meta-chip is fabricated and tested in this paper. The results show an insertion loss lower than 1 dB with a 10 dB switching ratio, which is 20% higher than that without C-ring while ensuring the rather low insertion loss. It shows that the presented mechanism has positive significance for the design of terahertz band functional devices.


Author(s):  
С.А. Королев ◽  
А.В. Горюнов ◽  
В.В. Паршин

A new approach to the creation of millimeter-wave radio imaging systems is proposed. This approach is based on the use of an array receiver consisting of a densely packed (pixel size - 4 mm) array of planar mixers located in the focal plane of a quasi-optical objective, with application of the frequency-modulated continuous-wave radar technique. It has been demonstrated that the implementation of the heterodyne type of reception makes it possible to increase the distance range of the array radio imaging system up to ~ 100 m while maintaining the angular resolution at the previous level.


Sign in / Sign up

Export Citation Format

Share Document