scholarly journals Nonsymmetric Macdonald Superpolynomials

Author(s):  
Charles F. Dunkl ◽  

There are representations of the type-A Hecke algebra on spaces of polynomials in anti-commuting variables. Luque and the author [Sém. Lothar. Combin. 66 (2012), Art. B66b, 68 pages, arXiv:1106.0875] constructed nonsymmetric Macdonald polynomials taking values in arbitrary modules of the Hecke algebra. In this paper the two ideas are combined to define and study nonsymmetric Macdonald polynomials taking values in the aforementioned anti-commuting polynomials, in other words, superpolynomials. The modules, their orthogonal bases and their properties are first derived. In terms of the standard Young tableau approach to representations these modules correspond to hook tableaux. The details of the Dunkl-Luque theory and the particular application are presented. There is an inner product on the polynomials for which the Macdonald polynomials are mutually orthogonal. The squared norms for this product are determined. By using techniques of Baker and Forrester [Ann. Comb. 3 (1999), 159-170, arXiv:q-alg/9707001] symmetric Macdonald polynomials are built up from the nonsymmetric theory. Here ''symmetric'' means in the Hecke algebra sense, not in the classical group sense. There is a concise formula for the squared norm of the minimal symmetric polynomial, and some formulas for anti-symmetric polynomials. For both symmetric and anti-symmetric polynomials there is a factorization when the polynomials are evaluated at special points.

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Charles F. Dunkl

In a preceding paper the theory of nonsymmetric Macdonald polynomials taking values in modules of the Hecke algebra of type A (Dunkl and Luque SLC 2012) was applied to such modules consisting of polynomials in anti-commuting variables, to define nonsymmetric Macdonald superpolynomials. These polynomials depend on two parameters q,t and are defined by means of a Yang–Baxter graph. The present paper determines the values of a subclass of the polynomials at the special points 1,t,t2,… or 1,t−1,t−2,…. The arguments use induction on the degree and computations with products of generators of the Hecke algebra. The resulting formulas involve q,t-hook products. Evaluations are also found for Macdonald superpolynomials having restricted symmetry and antisymmetry properties.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 503
Author(s):  
Charles Dunkl

For each partition τ of N, there are irreducible modules of the symmetric groups S N and of the corresponding Hecke algebra H N t whose bases consist of the reverse standard Young tableaux of shape τ . There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules. The Jack polynomials form a special case of the polynomials constructed by Griffeth for the infinite family G n , p , N of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author. For each of the groups S N and the Hecke algebra H N t , there is a commutative set of Dunkl operators. The Jack and the Macdonald polynomials are parametrized by κ and q , t , respectively. For certain values of these parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. This paper analyzes the singular polynomials whose leading term is x 1 m ⊗ S , where S is an arbitrary reverse standard Young tableau of shape τ . The singular values depend on the properties of the edge of the Ferrers diagram of τ .


10.37236/6466 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Ping Sun

Let $g_{n_1,n_2}$ be the number of standard Young tableau of truncated shifted shape with $n_1$ rows and $n_2$ boxes in each row. By using the integral method this paper derives the recurrence relations of $g_{3,n}$, $g_{n,4}$ and $g_{n,5}$ respectively. Specifically, $g_{n,4}$ is the $(2n-1)$-st Pell number.


10.37236/4932 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Jonathan E. Beagley ◽  
Paul Drube

A tableau inversion is a pair of entries in row-standard tableau $T$ that lie in the same column of $T$ yet lack the appropriate relative ordering to make $T$ column-standard.  An $i$-inverted Young tableau is a row-standard tableau along with precisely $i$ inversion pairs. Tableau inversions were originally introduced by Fresse to calculate the Betti numbers of Springer fibers in Type A, with the number of $i$-inverted tableaux that standardize to a fixed standard Young tableau corresponding to a specific Betti number of the associated fiber. In this paper we approach the topic of tableau inversions from a completely combinatorial perspective. We develop formulas enumerating the number of $i$-inverted Young tableaux for a variety of tableaux shapes, not restricting ourselves to inverted tableau that standardize a specific standard Young tableau, and construct bijections between $i$-inverted Young tableaux of a certain shape with $j$-inverted Young tableaux of different shapes. Finally, we share some the results of a computer program developed to calculate tableaux inversions.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Radmila Sazdanović ◽  
Martha Yip

International audience The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$<sub>*</sub>($G$) of graded $S_n$-modules, whose graded Frobenius series $Frob_G(q,t)$ reduces to the chromatic symmetric function at $q=t=1$. We also obtain analogues of several familiar properties of the chromatic symmetric polynomials in terms of homology. Le polynôme chromatique symétrique d’un graphe $G$ est une généralisation par une fonction symétrique du polynôme chromatique, et possède des propriétés combinatoires intéressantes. Nous appliquons les techniques de l’homologie de Khovanov pour construire une homologie $H$<sub>*</sub>($G$) de modules gradués $S_n$, dont la série bigraduée de Frobeniusse $Frob_G(q,t)$ réduit au polynôme chromatique symétrique à $q=t=1$. Nous obtenons également des analogies pour plusieurs propriétés connues des polynômes chromatiques en termes d’homologie.


2020 ◽  
Vol 12 (1) ◽  
pp. 5-16
Author(s):  
T.V. Vasylyshyn

This work is devoted to study algebras of continuous symmetric, that is, invariant with respect to permutations of coordinates of its argument, polynomials and $*$-polynomials on Banach spaces $\ell_p(\mathbb{R}^n)$ and $\ell_p(\mathbb{C}^n)$ of $p$-power summable sequences of $n$-dimensional vectors of real and complex numbers resp., where $1\leq p < +\infty.$ We construct the subset of the algebra of all continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n)$ such that every continuous symmetric polynomial on the space $\ell_p(\mathbb{R}^n)$ can be uniquely represented as a linear combination of products of elements of this set. In other words, we construct an algebraic basis of the algebra of all continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n).$ Using this result, we construct an algebraic basis of the algebra of all continuous symmetric $*$-polynomials on the space $\ell_p(\mathbb{C}^n).$ Results of the paper can be used for investigations of algebras, generated by continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n),$ and algebras, generated by continuous symmetric $*$-polynomials on the space $\ell_p(\mathbb{C}^n).$


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Hidetoshi Awata ◽  
Hiroaki Kanno ◽  
Andrei Mironov ◽  
Alexei Morozov

AbstractWe suggest a further generalization of the hypergeometric-like series due to M. Noumi and J. Shiraishi by substituting the Pochhammer symbol with a nearly arbitrary function. Moreover, this generalization is valid for the entire Shiraishi series, not only for its Noumi–Shiraishi part. The theta function needed in the recently suggested description of the double-elliptic systems [Awata et al. JHEP 2020:150, arXiv:2005.10563, (2020)], 6d N = 2* SYM instanton calculus and the doubly-compactified network models, is a very particular member of this huge family. The series depends on two kinds of variables, $$\vec {x}$$ x → and $$\vec {y}$$ y → , and on a set of parameters, which becomes infinitely large now. Still, one of the parameters, p is distinguished by its role in the series grading. When $$\vec {y}$$ y → are restricted to a discrete subset labeled by Young diagrams, the series multiplied by a monomial factor reduces to a polynomial at any given order in p. All this makes the map from functions to the hypergeometric-like series very promising, and we call it Shiraishi functor despite it remains to be seen, what are exactly the morphisms that it preserves. Generalized Noumi–Shiraishi (GNS) symmetric polynomials inspired by the Shiraishi functor in the leading order in p can be obtained by a triangular transform from the Schur polynomials and possess an interesting grading. They provide a family of deformations of Macdonald polynomials, as rich as the family of Kerov functions, still very different from them, and, in fact, much closer to the Macdonald polynomials. In particular, unlike the Kerov case, these polynomials do not depend on the ordering of Young diagrams in the triangular expansion.


Sign in / Sign up

Export Citation Format

Share Document