standard young tableau
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Charles F. Dunkl ◽  

There are representations of the type-A Hecke algebra on spaces of polynomials in anti-commuting variables. Luque and the author [Sém. Lothar. Combin. 66 (2012), Art. B66b, 68 pages, arXiv:1106.0875] constructed nonsymmetric Macdonald polynomials taking values in arbitrary modules of the Hecke algebra. In this paper the two ideas are combined to define and study nonsymmetric Macdonald polynomials taking values in the aforementioned anti-commuting polynomials, in other words, superpolynomials. The modules, their orthogonal bases and their properties are first derived. In terms of the standard Young tableau approach to representations these modules correspond to hook tableaux. The details of the Dunkl-Luque theory and the particular application are presented. There is an inner product on the polynomials for which the Macdonald polynomials are mutually orthogonal. The squared norms for this product are determined. By using techniques of Baker and Forrester [Ann. Comb. 3 (1999), 159-170, arXiv:q-alg/9707001] symmetric Macdonald polynomials are built up from the nonsymmetric theory. Here ''symmetric'' means in the Hecke algebra sense, not in the classical group sense. There is a concise formula for the squared norm of the minimal symmetric polynomial, and some formulas for anti-symmetric polynomials. For both symmetric and anti-symmetric polynomials there is a factorization when the polynomials are evaluated at special points.


Author(s):  
Mark Dukes ◽  
Toufik Mansour

In this paper, we introduce a new statistic on standard Young tableaux that is closely related to the maxdrop permutation statistic that was introduced by the first author. We prove that the value of the statistic must be attained at one of the corners of the standard Young tableau. We determine the coefficients of the generating function of this statistic over two-row standard Young tableaux having [Formula: see text] cells. We prove several results for this new statistic that include unimodality of the coefficients for the two-row case.


10.37236/9246 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Andrew Beveridge ◽  
Ian Calaway ◽  
Kristin Heysse

The order ideal $B_{n,2}$ of the Boolean lattice $B_n$ consists of all subsets of size at most $2$. Let $F_{n,2}$ denote the poset refinement of $B_{n,2}$ induced by the rules: $i < j$ implies $\{i \} \prec \{ j \}$ and $\{i,k \} \prec \{j,k\}$. We give an elementary bijection from the set $\mathcal{F}_{n,2}$ of linear extensions of $F_{n,2}$ to the set of  shifted standard Young tableau of shape $(n, n-1, \ldots, 1)$, which are counted by the strict-sense ballot numbers. We find a more surprising result when considering the set $\mathcal{F}_{n,2}^{1}$  of minimal poset refinements in which each singleton is comparable with all of the doubletons. We show that $\mathcal{F}_{n,2}^{1}$ is in bijection with magog triangles, and therefore is equinumerous with alternating sign matrices. We adopt our proof techniques to show that row reversal of an alternating sign matrix corresponds to a natural involution on gog triangles.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 503
Author(s):  
Charles Dunkl

For each partition τ of N, there are irreducible modules of the symmetric groups S N and of the corresponding Hecke algebra H N t whose bases consist of the reverse standard Young tableaux of shape τ . There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules. The Jack polynomials form a special case of the polynomials constructed by Griffeth for the infinite family G n , p , N of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author. For each of the groups S N and the Hecke algebra H N t , there is a commutative set of Dunkl operators. The Jack and the Macdonald polynomials are parametrized by κ and q , t , respectively. For certain values of these parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. This paper analyzes the singular polynomials whose leading term is x 1 m ⊗ S , where S is an arbitrary reverse standard Young tableau of shape τ . The singular values depend on the properties of the edge of the Ferrers diagram of τ .


10.37236/7713 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Judith Jagenteufel

Motivated by the direct-sum-decomposition of the $r^{\text{th}}$ tensor power of the defining representation of the special orthogonal group $\mathrm{SO}(2k + 1)$, we present a bijection between vacillating tableaux and pairs consisting of a standard Young tableau and an orthogonal Littlewood-Richardson tableau for $\mathrm{SO}(3)$.Our bijection preserves a suitably defined descent set. Using it we determine the quasi-symmetric expansion of the Frobenius characters of the isotypic components.On the combinatorial side we obtain a bijection between Riordan paths and standard Young tableaux with 3 rows, all of even length or all of odd length.


10.37236/6466 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Ping Sun

Let $g_{n_1,n_2}$ be the number of standard Young tableau of truncated shifted shape with $n_1$ rows and $n_2$ boxes in each row. By using the integral method this paper derives the recurrence relations of $g_{3,n}$, $g_{n,4}$ and $g_{n,5}$ respectively. Specifically, $g_{n,4}$ is the $(2n-1)$-st Pell number.


10.37236/4932 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Jonathan E. Beagley ◽  
Paul Drube

A tableau inversion is a pair of entries in row-standard tableau $T$ that lie in the same column of $T$ yet lack the appropriate relative ordering to make $T$ column-standard.  An $i$-inverted Young tableau is a row-standard tableau along with precisely $i$ inversion pairs. Tableau inversions were originally introduced by Fresse to calculate the Betti numbers of Springer fibers in Type A, with the number of $i$-inverted tableaux that standardize to a fixed standard Young tableau corresponding to a specific Betti number of the associated fiber. In this paper we approach the topic of tableau inversions from a completely combinatorial perspective. We develop formulas enumerating the number of $i$-inverted Young tableaux for a variety of tableaux shapes, not restricting ourselves to inverted tableau that standardize a specific standard Young tableau, and construct bijections between $i$-inverted Young tableaux of a certain shape with $j$-inverted Young tableaux of different shapes. Finally, we share some the results of a computer program developed to calculate tableaux inversions.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Robin Sulzgruber

International audience The number of standard Young tableaux of a fixed shape is famously given by the hook-length formula due to Frame, Robinson and Thrall. A bijective proof of Novelli, Pak and Stoyanovskii relies on a sorting algorithm akin to jeu-de-taquin which transforms an arbitrary filling of a partition into a standard Young tableau by exchanging adjacent entries. Recently, Krattenthaler and Müller defined the complexity of this algorithm as the average number of performed exchanges, and Neumann and the author proved it fulfils some nice symmetry properties. In this paper we recall and extend the previous results and provide new bijective proofs.


10.37236/360 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Thomas Lam

We study quantized dual graded graphs, which are graphs equipped with linear operators satisfying the relation $DU - qUD = rI$. We construct examples based upon: the Fibonacci differential poset, permutations, standard Young tableau, and plane binary trees.


10.37236/1886 ◽  
2006 ◽  
Vol 11 (2) ◽  
Author(s):  
David J. Grabiner

Let $\mu$ be a partition of $k$, and $T$ a standard Young tableau of shape $\mu$. McKay, Morse, and Wilf show that the probability a randomly chosen Young tableau of $N$ cells contains $T$ as a subtableau is asymptotic to $f^\mu/k!$ as $N$ goes to infinity, where $f^\mu$ is the number of all tableaux of shape $\mu$. We use a random-walk argument to show that the analogous asymptotic probability for randomly chosen Young tableaux with at most $n$ rows is proportional to $\prod_{1\le i < j\le n}\bigl((\mu_i-i)-(\mu_j-j)\bigr)$; as $n$ goes to infinity, the probabilities approach $f^\mu/k!$ as expected. We have a similar formula for up-down tableaux; the probability approaches $f^\mu/k!$ if $\mu$ has $k$ cells and thus the up-down tableau is actually a standard tableau, and approaches 0 if $\mu$ has fewer than $k$ cells.


Sign in / Sign up

Export Citation Format

Share Document