Hydrodynamical Models of Protoplanetary Nebulae Including the Photoionization of the Central Star

2019 ◽  
Vol 876 (1) ◽  
pp. 29 ◽  
Author(s):  
D. Estrella-Trujillo ◽  
L. Hernández-Martínez ◽  
P. F. Velázquez ◽  
A. Esquivel ◽  
A. C. Raga
2019 ◽  
Vol 490 (4) ◽  
pp. 5596-5614 ◽  
Author(s):  
Lisa Wölfer ◽  
Giovanni Picogna ◽  
Barbara Ercolano ◽  
Ewine F van Dishoeck

ABSTRACT The so-called transition discs provide an important tool to probe various mechanisms that might influence the evolution of protoplanetary discs and therefore the formation of planetary systems. One of these mechanisms is photoevaporation due to energetic radiation from the central star, which can in principal explain the occurrence of discs with inner cavities like transition discs. Current models, however, fail to reproduce a subset of the observed transition discs, namely objects with large measured cavities and vigorous accretion. For these objects the presence of (multiple) giant planets is often invoked to explain the observations. In our work, we explore the possibility of X-ray photoevaporation operating in discs with different gas-phase depletion of carbon and show that the influence of photoevaporation can be extended in such low-metallicity discs. As carbon is one of the main contributors to the X-ray opacity, its depletion leads to larger penetration depths of X-rays in the disc and results in higher gas temperatures and stronger photoevaporative winds. We present radiation-hydrodynamical models of discs irradiated by internal X-ray + EUV radiation assuming carbon gas-phase depletions by factors of three, 10, and 100 and derive realistic mass-loss rates and profiles. Our analysis yields robust temperature prescriptions as well as photoevaporative mass-loss rates and profiles which may be able to explain a larger fraction of the observed diversity of transition discs.


2002 ◽  
Vol 206 ◽  
pp. 352-357
Author(s):  
Raghvendra Sahai ◽  
Mark J. Claussen ◽  
Mark Morris

One of the most exciting challenge facing theories of post-main sequence evolution today is to understand how Asymptotic Giant Branch (AGB) stars transform themselves into aspherical planetary nebulae (PNe). Recently, high-resolution imaging surveys of young planetary nebulae and protoplanetary nebulae (PPNe: objects in transition between the AGB and PN phases) have revealed that the majority of these objects are characterised by multipolar bubbles distributed roughly point-symmetrically around the central star. These data strongly suggest that the current model for the shaping of PNe is no longer adequate. High angular-resolution kinematic information is sorely needed to complement the imaging data in order to test new hypotheses, such as our proposal that episodic high-speed jet-like outflows, operating during the protoplanetary or very late-AGB phase, are the primary agent.We have therefore begun a program of using interferometric mapping of OH (and H2O, when feasible) maser emission in order to trace the kinematics of the structures discovered in protoplanetary nebulae with HST. These masers provide a unique and crucial probe of the kinematics of the circumstellar material in PPNe, because of the lack of other emission-line diagnostics. Although our work is still in its infancy (only two objects have been studied in detail), we find that the OH masers indicate the presence of multiple low-latitude outflows and an increase of outflow velocity with latitude. This paper summarises our progress so far, the state of current studies, and future prospects.


2003 ◽  
Vol 209 ◽  
pp. 519-520
Author(s):  
Raghvendra Sahai ◽  
Mark J. Claussen ◽  
Mark Morris

Recently, high-resolution imaging surveys of young planetary nebulae (PNe) and protoplanetary nebulae (PPNe) have revealed that the majority of these objects are characterised by multipolar bubbles distributed roughly point-symmetrically around the central star (e.g. Sahai & Trauger 1998, Sahai 2000). Sahai & Trauger (1998) have proposed that episodic high-speed jet-like outflows, operating during the protoplanetary or very late-AGB phase, are the primary agent for shaping PNe. OH and H2O masers provide a unique and crucial probe of the kinematics of the circumstellar material in PPNe, because of the general lack of other emission-line diagnostics. Here we present new results from our ongoing study of PPNe usingHSTimages with interferometric OH & H2O maser-line data to unravel their detailed spatio-kinematic structure (e.g. Sahai et al. 1999a, Sahai, Claussen, & Morris 2002).


1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


1998 ◽  
Vol 11 (1) ◽  
pp. 363-363
Author(s):  
Johanna Jurcsik ◽  
Benjamin Montesinos

FG Sagittae is one of the most important key objects of post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human time scales during this century. The observational history was reviewed in comparison with predictions from evolutionary models. The central star of the old planetary nebula (Hel-5) evolved from left to right in the HR diagram, going in just hundred years from the hot region of exciting sources of planetary nebulae to the cool red supergiant domain just before our eyes becoming a newly-born post-AGB star. The effective temperature of the star was around 50,000 K at the beginning of this century, and the last estimates in the late 1980s give 5,000-6,500 K. Recent spectroscopic observations obtained by Ingemar Lundström show definite changes in the nebular line intensities. This fact undoubtedly rules out the possibility that, instead of FG Sge, a hidden hot object would be the true central star of the nebula. Consequently, the observed evolutionary changes are connected with the evolution of a single star.


1998 ◽  
Vol 11 (1) ◽  
pp. 358-358
Author(s):  
M. Parthasarathy

SAO 244567 (Henl357) (IRAS 17119-5926) is a high galactic latitude (1 = 331°, b = −12°) early type star, originally classified as a B or A type H-alpha emission line star by Henize (1976). It is an IRAS source with far infrared colours similar to planetary nebulae. The IUE ultraviolet spectra obtained during the last eight years show that the central star is rapidly evolving. It is found that the central star of this young PN has faded by a factor of 3 within the last seven eight years. The terminal velocity of the stellar wind has decreased from −3500 km/sec in 1988 to almost zero in 1994. In 1988 the C IV (1550A) line which was a P-Cygni profile with strong absorption component had almost vanished by 1994. The CIII] 1909A emission strength increased markedly within 4 years from 1988 to 1992. The optical spectra obtained since 1990 shows very clearly only the nebular spectrum which is very similar to that of low excitation planetary nebula. The optical spectrum of SAO 244567 obtained in 1971 shows that it was a post-AGB B 1 or B2 supergiant at that time. This result shows that SAO 244567 has turned into a planetary nebula within the last 20 years. Recently Bobrowsky (1994) obtained narrowband optically resolved images in both H-beta and [OIII] 5007A with the HST planetary camera which revealed a well resolved nebula of size 2 seconds of arc. In this paper we discuss the recent new results.


2021 ◽  
Vol 502 (2) ◽  
pp. 2984-3002
Author(s):  
Lewis Watt ◽  
Zoe Leinhardt ◽  
Kate Y L Su

ABSTRACT In this paper, we present results from a multistage numerical campaign to begin to explain and determine why extreme debris disc detections are rare, what types of impacts will result in extreme debris discs and what we can learn about the parameters of the collision from the extreme debris discs. We begin by simulating many giant impacts using a smoothed particle hydrodynamical code with tabulated equations of state and track the escaping vapour from the collision. Using an N-body code, we simulate the spatial evolution of the vapour generated dust post-impact. We show that impacts release vapour anisotropically not isotropically as has been assumed previously and that the distribution of the resulting generated dust is dependent on the mass ratio and impact angle of the collision. In addition, we show that the anisotropic distribution of post-collision dust can cause the formation or lack of formation of the short-term variation in flux depending on the orientation of the collision with respect to the orbit around the central star. Finally, our results suggest that there is a narrow region of semimajor axis where a vapour generated disc would be observable for any significant amount of time implying that giant impacts where most of the escaping mass is in vapour would not be observed often but this does not mean that the collisions are not occurring.


Author(s):  
T M Lawlor

Abstract We present stellar evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PN) phase for models of initial mass 1.2 M⊙ and 2.0 M⊙ that experience a Late Thermal Pulse (LTP), a helium shell flash that occurs following the AGB and causes a rapid looping evolution between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, V839 Ara (SAO 244567). The central star has been observed to be rapidly evolving (heating) over the last 50 to 60 years and rapidly dimming over the past 20–30 years. It has been reported to belong to the youngest known planetary nebula, now rapidly fading in brightness. In this paper we show that the observed timescales, sudden dimming, and increasing Log(g), can all be explained by LTP models of a specific variety. We provide a possible explanation for the nebular ionization, the 1980’s sudden mass loss episode, the sudden decline in mass loss, and the nebular recombination and fading.


1993 ◽  
Vol 155 ◽  
pp. 572-572
Author(s):  
C.Y. Zhang

We have selected a sample of planetary nebulae, for which the core masses are determined using distance-independent parameters (Zhang and Kwok 1992). The chemical abundances of He, N, O, and C are taken from the literature for them. Relationships of the ratios of He/H, N/O, and C/O with various stellar parameters of planetary nebulae (PN), such as the core mass, the mass of the core plus the ionized nebular gas, the stellar age and temperature, are examined. It is found that the N/O increases with increasing mass, while the C/O first increases and then decreases with the core mass. No strong correlation seems to exist between the He/H and the core mass. A correlation of the N/O and He/H with the stellar temperature exists. The current dredge-up theory for the progenitor AGB stars cannot satisfactorily account for these patterns of chemical enrichment in PN. Furthermore, the correlations of the N/O and He/H with the stellar age and temperature indicate that besides the dredge-ups in the RG and AGB stages, physical processes that happen in the planetary nebula stage may also play a role in forming the observed patterns of chemical enrichment in the planetary nebulae.


2013 ◽  
Vol 438 (2) ◽  
pp. 1794-1804 ◽  
Author(s):  
L. Sabin ◽  
Q. Zhang ◽  
A. A. Zijlstra ◽  
N. A. Patel ◽  
R. Vázquez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document