General biconvex functions and bivariational inequalities
<p style='text-indent:20px;'>In this paper, we define and introduce some new concepts of the higher order strongly general biconvex functions involving the arbitrary bifunction and a function. Some new relationships among various concepts of higher order strongly general biconvex functions have been established. It is shown that the new parallelogram laws for Banach spaces can be obtained as applications of higher order strongly affine general biconvex functions, which is itself an novel application. It is proved that the optimality conditions of the higher order strongly general biconvex functions are characterized by a class of variational inequalities, which is called the higher order strongly general bivariational inequality. Auxiliary principle technique is used to suggest an implicit method for solving strongly general bivariational inequalities. Convergence analysis of the proposed method is investigated using the pseudo-monotonicity of the operator. Some special cases also discussed. Results obtained in this paper can be viewed as refinement and improvement of previously known results.</p>