Integrated approach to well test and production log analysis interpretation of multiple hydraulically fractured horizontal wells in low permeability heterogeneous formation

Author(s):  
E.I. Grishina ◽  
M.I. Kremenetsky
SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1623-1635 ◽  
Author(s):  
Ashish Kumar ◽  
Puneet Seth ◽  
Kaustubh Shrivastava ◽  
Ripudaman Manchanda ◽  
Mukul M. Sharma

Summary In ultralow-permeability reservoirs, communication between wells through connected fractures can be observed through tracer and pressure-interference tests. Understanding the connectivity between fractured horizontal wells in a multiwell pad is important for infill well drilling and parent-child well interactions. Interwell tracer and pressure-interference tests involve two or more fractured horizontal wells and provide information about hydraulic-fracture connectivity between the wells. In this work, we present an integrated approach based on the analysis of tracer and pressure interference data to obtain the degree of interference between fractured horizontal wells in a multiwell pad. We analyze well interference using tracer (chemical tracer and radioactive proppant tracer) and pressure data in an 11-well pad in the Permian Basin. Changes in pressure and tracer concentration in the monitor wells were used to identify and evaluate interference between the source and monitor wells. Extremely low tracer recovery and weak pressure response signify the absence of connected fractures and suggest that interference through matrix alone is insignificant. Combined tracer and pressure-interference data suggest connected fracture pathways between the communicating wells. The degree of interference can be estimated in terms of pressure response times and tracer recovery. An effective reservoir model was used to simulate pressure interference between wells during production. Simulation results indicate that well interference observed during production is primarily because of hydraulically connected fractures. Combined tracer and pressure-interference analysis provides a unique tool for understanding the time-dependent connectivity between communicating wells, which can be useful for optimizing infill well drilling, well spacing, and fracture sizing in future treatment designs.


Author(s):  
Yong Wang ◽  
Xiangyi Yi

AbstractCarbonate reservoir is one kinds of important reservoir in the world. Because of the characteristics of carbonate reservoir, horizontal well, and acid fracturing became a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A coupling mathematical model for a fractured horizontal well in triple media carbonate reservoir with three kinds of reservoir outer boundaries by conceptualizing vugs as spherical shapes is presented in this article, in which the infinite conductivity of the acid fractures is taken into account. A semi-analytical solution is obtained in the Laplace domain by using source function theory, Laplace transformation, discretization of fracture, and superposition principle. Analysis of transient pressure responses indicates that several characteristic flow periods of fractured horizontal wells in triple media carbonate reservoir can be identified. Parametric analysis shows that fracture half-length, fracture number, fracture spacing, conditions of reservoir outer boundary, and so on can significantly influence the transient pressure responses of fractured horizontal wells in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir or fracture by type curve matching, and it can also provide useful information for optimizing fracture parameters.


2010 ◽  
Author(s):  
Abbas M. Belyadi ◽  
Kashy Aminian ◽  
Samuel Ameri ◽  
A. Light-Foot Boston

Sign in / Sign up

Export Citation Format

Share Document