BioCondition Assessment Tool

Author(s):  
Chin Loong Law ◽  
Paul Roe ◽  
Jinglan Zhang

Environmental degradation has become increasingly aggressive in recent years due to rapid urban development and other land use pressures. This chapter looks at BioCondition, a newly developed vegetation assessment framework by Queensland Department of Resource Management (DERM) and how mobile technology can assist beginners in conducting the survey. Even though BioCondition is designed to be simple, it is still fairly inaccessible to beginners due to its complex, time consuming, and repetitive nature. A Windows Phone mobile application, BioCondition Assessment Tool, was developed to provide on-site guidance to beginners and document the assessment process for future revision and comparison. The application was tested in an experiment at Samford Conservation Park with 12 students studying ecology in Queensland University of Technology.

Author(s):  
M. Sazzad Hussain ◽  
David Silvera-Tawil ◽  
Geremy Farr-Wharton

Abstract Objective Established and emerging technologies—such as wearable sensors, smartphones, mobile apps, and artificial intelligence—are shaping positive healthcare models and patient outcomes. These technologies have the potential to become precision health (PH) innovations. However, not all innovations meet regulatory standards or have the required scientific evidence to be used for health applications. In response, an assessment framework was developed to facilitate and standardize the assessment of innovations deemed suitable for PH. Methods A scoping literature review undertaken through PubMed and Google Scholar identified approximately 100 relevant articles. These were then shortlisted (n = 12) to those that included specific metrics, criteria, or frameworks for assessing technologies that could be applied to the PH context. Results The proposed framework identified nine core criteria with subcriteria and grouped them into four categories for assessment: technical, clinical, human factors, and implementation. Guiding statements with response options and recommendations were used as metrics against each criterion. Conclusion The proposed framework supports health services, health technology innovators, and researchers in leveraging current and emerging technologies for PH innovations. It covers a comprehensive set of criteria as part of the assessment process of these technologies.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2018 ◽  
Vol 10 (12) ◽  
pp. 1910 ◽  
Author(s):  
Joseph Spruce ◽  
John Bolten ◽  
Raghavan Srinivasan ◽  
Venkat Lakshmi

This paper discusses research methodology to develop Land Use Land Cover (LULC) maps for the Lower Mekong Basin (LMB) for basin planning, using both MODIS and Landsat satellite data. The 2010 MODIS MOD09 and MYD09 8-day reflectance data was processed into monthly NDVI maps with the Time Series Product Tool software package and then used to classify regionally common forest and agricultural LULC types. Dry season circa 2010 Landsat top of atmosphere reflectance mosaics were classified to map locally common LULC types. Unsupervised ISODATA clustering was used to derive most LULC classifications. MODIS and Landsat classifications were combined with GIS methods to derive final 250-m LULC maps for Sub-basins (SBs) 1–8 of the LMB. The SB 7 LULC map with 14 classes was assessed for accuracy. This assessment compared random locations for sampled types on the SB 7 LULC map to geospatial reference data such as Landsat RGBs, MODIS NDVI phenologic profiles, high resolution satellite data, and Mekong River Commission data (e.g., crop calendars). The SB 7 LULC map showed an overall agreement to reference data of ~81%. By grouping three deciduous forest classes into one, the overall agreement improved to ~87%. The project enabled updated regional LULC maps that included more detailed agriculture LULC types. LULC maps were supplied to project partners to improve use of Soil and Water Assessment Tool for modeling hydrology and water use, plus enhance LMB water and disaster management in a region vulnerable to flooding, droughts, and anthropogenic change as part of basin planning and assessment.


2019 ◽  
Vol 35 (5) ◽  
pp. 723-731 ◽  
Author(s):  
Gurdeep Singh ◽  
Dharmendra Saraswat ◽  
Naresh Pai ◽  
Benjamin Hancock

Abstract. Standard practice of setting up Soil and Water Assessment Tool (SWAT) involves use of a single land use (LU) layer under the assumption that no change takes place in LU condition irrespective of the length of simulation period. This assumption leads to erroneous conclusions about efficacy of management practices in those watersheds where land use changes (LUCs) (e.g. agriculture to urban, forest to agriculture etc.) occur during the simulation period. To overcome this limitation, we have developed a user-friendly, web-based tool named LUU Checker that helps create a composite LU layer by integrating multiple years of LU layers available in watersheds of interest. The results show that the use of composite LU layer for hydrologic response unit (HRU) delineation in 2474-km2 L’Anguile River Watershed in Arkansas was able to capture changed LU at subbasin level by using LU data available in the year 1999 and 2006, respectively. The web-based tool is applicable for large size watersheds and is accessible to multiple users from anywhere in the world. Keywords: Land use, Web-based tool, SWAT, LUU Checker.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


2018 ◽  
Vol 22 (11) ◽  
pp. 5947-5965 ◽  
Author(s):  
Linh Hoang ◽  
Rajith Mukundan ◽  
Karen E. B. Moore ◽  
Emmet M. Owens ◽  
Tammo S. Steenhuis

Abstract. Uncertainty in hydrological modeling is of significant concern due to its effects on prediction and subsequent application in watershed management. Similar to other distributed hydrological models, model uncertainty is an issue in applying the Soil and Water Assessment Tool (SWAT). Previous research has shown how SWAT predictions are affected by uncertainty in parameter estimation and input data resolution. Nevertheless, little information is available on how parameter uncertainty and output uncertainty are affected by input data of varying complexity. In this study, SWAT-Hillslope (SWAT-HS), a modified version of SWAT capable of predicting saturation-excess runoff, was applied to assess the effects of input data with varying degrees of complexity on parameter uncertainty and output uncertainty. Four digital elevation model (DEM) resolutions (1, 3, 10 and 30 m) were tested for their ability to predict streamflow and saturated areas. In a second analysis, three soil maps and three land use maps were used to build nine SWAT-HS setups from simple to complex (fewer to more soil types/land use classes), which were then compared to study the effect of input data complexity on model prediction/output uncertainty. The case study was the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region, New York, USA. Results show that DEM resolution did not impact parameter uncertainty or affect the simulation of streamflow at the watershed outlet but significantly affected the spatial pattern of saturated areas, with 10m being the most appropriate grid size to use for our application. The comparison of nine model setups revealed that input data complexity did not affect parameter uncertainty. Model setups using intermediate soil/land use specifications were slightly better than the ones using simple information, while the most complex setup did not show any improvement from the intermediate ones. We conclude that improving input resolution and complexity may not necessarily improve model performance or reduce parameter and output uncertainty, but using multiple temporal and spatial observations can aid in finding the appropriate parameter sets and in reducing prediction/output uncertainty.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3147
Author(s):  
Mengxue Zhang ◽  
Radosław Stodolak ◽  
Jianxin Xia

Climate, land use and human activity have an impact on the Qingshui River in Chongli County. The Soil and Water Assessment Tool (SWAT) was used to separately analyze the contributions of climate, land use and direct human activity on the discharge variations. The results indicated that human activity had been the dominant factor for the discharge decrease, while climate and land use change had a positive influence on the discharge increase. The contributions of these three factors were −56.24%, 38.59% and 5.17%, respectively. Moreover, on the seasonal scale, the impact of those factors was consistent with their impact on the annual scale. Human activity was the main factor for discharge decrease in the summer, the contribution accounting for −77.13%. Due to the over-extraction of groundwater for irrigation and use in the mining industry, the discharge showed a decreasing tendency, which has the potential to place stress on sustainable water use in the future. The result of the study may contribute to the optimization of water resource allocation and management.


2021 ◽  
Author(s):  
Chang Li ◽  
Zhili Wang ◽  
Yongjun Lu ◽  
Mingming Song

Abstract Quantifying the influences of land use/cover (LULC) change on hydrological processes is important for rational utilization of water resources. The objective of this study was to evaluate the impacts of spatiotemporal LULC change on hydrological components in a typical agricultural area located in the North China Plain at both basin and sub-basin scales. LULC change was quantified, and the Soil and Water Assessment Tool was optimized using parameters associated with LULC conditions. We concluded that the urban and forest areas increased by 25.57 and 10.56%, with the cropland area decreased by 36.76%. About half of the surface runoff (SURQ) in the basin was generated from the urban area, with the SURQ increased significantly in the upstream and downstream of the basin where overlapped with urbanized areas. The proportions of evapotranspiration generated by cropland and forest areas increased slightly (0.89 and 0.55%, respectively), especially in sub-basins where the conversion of cropland to forest was obvious. Urban, forest, and cropland were the main types that generated water yield (WYLD). The proportion of WYLD generated on the urban area increased by 9.55% and decreased in other areas, which may be related to the combined effects of urbanization and forest reduction.


2018 ◽  
Vol 51 (1-2) ◽  
pp. 37
Author(s):  
Daut Bajramovic ◽  
Manfred Gram

Common Assessment Framework (CAF), a European Total Quality Management (TQM) methodology, has been applied by municipalities across Bosnia and Herzegovina for a number of years. Municipalities have used CAF as a self-assessment tool to identify and meet their own development needs and improve organizational performance. Along with International Organization for Standardization (ISO) and Business Friendly Certificate (BFC) standards, CAF has been promoted by domestic non-governmental and international organizations as a TQM tool for public sector. This article provides an insight into experience of municipalities in BiH with implementation of CAF by focusing on their thematic priorities, organizational efficiency, output, outcome and citizens’ satisfaction.


Sign in / Sign up

Export Citation Format

Share Document