Performances of Adaptive Cuckoo Search Algorithm in Engineering Optimization
A new optimization algorithm, specifically, the cuckoo search algorithm (CSA), which inspired by the unique breeding strategy of cuckoos, has been developed recently. Preliminary studies demonstrated the comparative performances of the CSA as opposed to genetic algorithm and particle swarm optimization, however, with the competitive advantage of employing fewer control parameters. Given enough computation, the CSA is guaranteed to converge to the optimal solutions, albeit the search process associated to the random-walk behavior might be time-consuming. Moreover, the drawback from the fixed step size searching strategy in the inner computation of CSA still remain unsolved. The adaptive cuckoo search algorithm (ACSA), with the effort in the aspect of integrating an adaptive search strategy, was attached in this study. Its beneficial potential are analyzed in the benchmark test function optimization, as well as engineering optimization problem. Results showed that the proposed ACSA improved over the classical CSA.