Re-Engineering a Medical Devices Management Software System

Author(s):  
P.G. Malataras ◽  
Z.B. Bliznakov ◽  
N.E. Pallikarakis

The primary aim of a hospital Clinical Engineering Department (CED) is to ensure a safe and cost-effective operation of the medical devices. In order to achieve this goal, it needs to implement and establish a comprehensive biomedical technology management program, which is a complex and multidimensional task. This work presents a medical devices management software system to assist the CED in healthcare, and it appears, as a result, of an effort to re-engineer and rebuild such an old, successful management system. The findings of this re-engineering attempt are presented. The goal was the incorporation of the new trends in clinical engineering and medical devices management and the exploitation of the new capabilities provided by the modern software tools and platforms. The system is expected to respond to the changing healthcare environment demands, the increased efforts required, and the respective broader role that CEDs have to play.

2018 ◽  
pp. 312-322
Author(s):  
P.G. Malataras ◽  
Z.B. Bliznakov ◽  
N.E. Pallikarakis

The primary aim of a hospital Clinical Engineering Department (CED) is to ensure a safe and cost-effective operation of the medical devices. In order to achieve this goal, it needs to implement and establish a comprehensive biomedical technology management program, which is a complex and multidimensional task. This work presents a medical devices management software system to assist the CED in healthcare, and it appears, as a result, of an effort to re-engineer and rebuild such an old, successful management system. The findings of this re-engineering attempt are presented. The goal was the incorporation of the new trends in clinical engineering and medical devices management and the exploitation of the new capabilities provided by the modern software tools and platforms. The system is expected to respond to the changing healthcare environment demands, the increased efforts required, and the respective broader role that CEDs have to play.


2021 ◽  
Author(s):  
Chiara Elia Ghezzi ◽  
Devon R Hartigan ◽  
Justin Hardick ◽  
Rebecca Gore ◽  
Miryam Adelfio ◽  
...  

During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers had timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swab, help expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model, that offers an efficient and clinically relevant validation tool to replicate with high fidelity the clinical swabbing workflow, while being accessible, safe, reproducible, time and cost effective. ClearTi™ displayed a greater efficiency of release of inactivated virus in the benchtop model, confirmed by greater ability to report positive samples in a clinical study in comparison to flocked swabs. We also quantified in multi-center pre-clinical and clinical studies the detection of biological materials, as proxy for viral material, that showed a statistically significant difference in one study and a slight reduction in performance in comparison to flocked swabs. Taken together these results underscore the compelling benefits of non-absorbent injected molded anterior nasal swab for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortage, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms comfort, limited volume collection, and potential multiple usage.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 206
Author(s):  
Chiara E. Ghezzi ◽  
Devon R. Hartigan ◽  
Justin P. Hardick ◽  
Rebecca Gore ◽  
Miryam Adelfio ◽  
...  

During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers have timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swabs, has helped to expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the initial validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model which offers a novel, efficient, and clinically relevant validation tool to replicate the clinical swabbing workflow with high fidelity, while being accessible, safe, reproducible, and time- and cost-effective. ClearTip™ displayed greater inactivated virus release in the benchtop model, confirmed by its greater ability to report positive samples in a small clinical study in comparison to flocked swabs. We also quantified the detection of biological materials, as a proxy for viral material, in multi-center pre-clinical and clinical studies which showed a statistically significant difference in one study and a reduction in performance in comparison to flocked swabs. Taken together, these results emphasize the compelling benefits of non-absorbent injection-molded anterior nasal swabs for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortages, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms of comfort, limited volume collection, and potential multiple usage.


Author(s):  
James D. Chambers ◽  
Madison C. Silver ◽  
Flora C. Berklein ◽  
Joshua T. Cohen ◽  
Peter J. Neumann

2012 ◽  
pp. 1779-1798
Author(s):  
Dumitru Dan Burdescu ◽  
Marian Cristian Mihaescu

Self-assessment is one of the crucial activities within e-learning environments that provide learners with feedback regarding their level of accumulated knowledge. From this point of view, the authors think that guidance of learners in self-assessment activity must be an important goal of e-learning environment developers. The scope of the chapter is to present a recommender software system that runs along the e-learning platform. The recommender software system improves the effectiveness of self-assessment activities. The activities performed by learners represent the input data and the machine learning algorithms are used within the business logic of the recommender software system that runs along the e-learning platform. The output of the recommender software system is represented by advice given to learners in order to improve the effectiveness of self-assessment process. The methodology for obtaining improvement of self-assessment is based on embedding knowledge management into the business logic of the e-learning platform. Naive Bayes Classifier is used as machine learning algorithm for obtaining the resources (e.g., questions, chapters, and concepts) that need to be further accessed by learners. The analysis is accomplished for disciplines that are well structured according to a concept map. The input data set for the recommender software system is represented by student activities that are monitored within Tesys e-learning platform. This platform has been designed and implemented within Multimedia Applications Development Research Center at Software Engineering Department, University of Craiova. Monitoring student activities is accomplished through various techniques like creating log files or adding records into a table from a database. The logging facilities are embedded in the business logic of the e-learning platform. The e-learning platform is based on a software development framework that uses only open source software. The software architecture of the e-learning platform is based on MVC (model-view-controller) model that ensures the independence between the model (represented by MySQL database), the controller (represented by the business logic of the platform implemented in Java) and the view (represented by WebMacro which is a 100% Java open-source template language).


Sign in / Sign up

Export Citation Format

Share Document