Finite Element Analysis on Structural Stress of 8×8 InSb Infrared Focal Plane Array

2010 ◽  
Vol 34-35 ◽  
pp. 207-211 ◽  
Author(s):  
Qing Duan Meng ◽  
Xiao Ling Zhang ◽  
Xiao Lei Zhang ◽  
Wei Guo Sun

Based on viscoplastic Anand’s model, the structural stress of 8×8 InSb infrared focal plane array (IRFPA) detector is systemically analyzed by finite element method, and the impacts of design parameters including indium bump diameters, heights and InSb chip thicknesses on both von Mises stress and its distribution are discussed in this manuscript. Simulation results show that as the diameters of indium bump decreases from 36 μm to 24 μm in step of 2 μm, the maximum stress existing in InSb chip reduces first, increases then linearly with reduced indium bump diameters, and reaches minimum with indium bump diameter 30 μm, the stress distribution at the contacts areas is uniform and concentrated. Furthermore, the varied tendency has nothing to do with indium bump standoff height. With indium bump diameter 30 μm, as the thickness of InSb chip reduces from 21 μm to 9 μm in step of 3 μm, the varying tendency of the maximum stress value in InSb chip is just like the letter U, as the indium bump thickness decreases also from 21 μm to 6 μm in step of 3 μm, the maximum stress in 8×8 InSb IRPFA decreases from 260 MPa to 102 MPa, which is the smallest von Mises stress value obtained with the indium diameter 30 μm, thickness 9 μm and InSb thickness 12 μm.

2011 ◽  
Vol 201-203 ◽  
pp. 108-112
Author(s):  
Qing Duan Meng ◽  
Li Gong Sun ◽  
Jie Xin Pu

Based on viscoplastic Anand’s model, the structural stress of 8×8 InSb infrared focal plane array (IRFPA) detector is systemically analyzed by finite element method, and the impacts of design parameters including indium bump diameters, heights and InSb chip thicknesses on both Von Mises stress and its distribution are discussed in this manuscript. Simulation results show that the maximum stress existing in InSb chip reaches minimum with indium bump diameter 32μm. Under this condition, for the fixed indium height, as the InSb chip thickness reduces from 21µm to 9µm in step of 3µm, Von Mises stress maximum values of InSb chip seems increases gradually, and when the indium bump height reduces from 21µm to 9µm in step of 3µm, its maximum Von Mises stress increase at random increment, do not show certain rules, and indium bump height seems to have a comparable effect on stress value with InSb chip thickness. When indium diameter, height and InSb chip thickness are set to 32µm, 15µm, and 12µm, respectively, the maximal Von Mises value existing in InSb chip reaches minimal value 628MPa, simultaneously the stress distribution at the contacts areas is uniform and concentrated, and this structure is promising to avoid device invalidation.


2010 ◽  
Vol 152-153 ◽  
pp. 1721-1725 ◽  
Author(s):  
Qing Duan Meng ◽  
Qing Song Lin ◽  
Xiao Lei Zhang ◽  
Wei Guo Sun

Two-step method is used to research stress and its distribution in 64×64 InSb infrared focal plane array (IRFPA) employing finite element method. First, a small 8×8 InSb IRFPA is studied by changing indium bump diameters from 24μm to 36μm, with indium bump thickness 20μm and InSb thickness 10μm, the simulated results show that von Mises stress in InSb chip is dependent on indium bump diameters, the varying tendency is just like the letter V, here when indium bump diameters is set to 30μm, the smallest von Mises stress is achieved and its distribution in InSb chip is uniform at contacting areas. Then, InSb IRFPA array scale is doubled once again from 8×8 to 64×64 to learn the effect from array size, thus, the stress and its distribution of 64×64 InSb IRFPA is obtained in a short time. Simulation results show that von Mises stress maximum in InSb chip and Si readout integrated circuit almost do not increases with array scale, and the largest von Mises stress is located in InSb chips. Besides, stress distribution on the bottom surface of InSb chip is radiating, and decreases from core to four corners, and stress value at contacting area is smaller than those on its surrounding areas, contrary to stress distribution on top surface of InSb chip.


2012 ◽  
Vol 442 ◽  
pp. 162-166
Author(s):  
Li Wen Zhang ◽  
Ming Shao ◽  
Qiang Yu ◽  
Peng Fei Li

Based on finite element analysis, the structural stress of 8×8 InSb Infrared Focal Plane Array integrating with microlens arrays dependent on indium bump sizes is systemically researched. Simulation results show that as the diameters of indium bump increase from 16μm to 38μm in step of 2μm, the maximum stress existing in InSb chip first reduces, then increases, and reaches minimum with indium bump diameter 32μm. Yet the maximum stress in the indium bump array is almost unchangeable and keeps at 16.5MPa. The maximum stress in Si readout integrated circuit almost half stress in InSb chip. Besides, the stress appearing on those regions situating just on microlens array is much smaller than its surrounding regions, and the stress distribution is uniform at contacting areas between InSb chip and indium bump.


2011 ◽  
Vol 314-316 ◽  
pp. 530-534 ◽  
Author(s):  
Li Wen Zhang ◽  
Jin Chan Wang ◽  
Qian Yu ◽  
Qing Duan Meng

The thermal stress and strain, from the thermal mismatch of neighboring materials, are the major causes of fracture in InSb IRFPA. Basing on viscoelastic model describing underfill, the structural stress of 16×16 InSb IRFPA under thermal shock is studied with finite element method. Simulation results show that as the diameters of indium bump increase from 20μm to 36μm in step of 2μm, the maximum stress existing in InSb chip first increases slightly, and fluctuates near 28µm, then decreases gradually. Furthermore, the varied tendency seems to have nothing to do with indium bump standoff height, and with thicker indium bump height, the maximal Von Mises stress in InSb chip is smaller. All these mean that the thicker underfill is in favor of reducing the stress in InSb chip and improving the final yield.


2011 ◽  
Vol 121-126 ◽  
pp. 4320-4324
Author(s):  
Qian Yu ◽  
Li Wen Zhang ◽  
Qing Duan Meng

To reduce the fracture probability of InSb infrared detector in thermal shock from room temperature to 77K, for 16×16 mesa structure InSb infrared focal plane array detector with underfill, here ANSYS, is employed to research the impacts from both indium bump diameters and heights on both Von Mises stress and its distribution. Simulation results show that when the diameters of indium bump increases from 20µm to 36µm in step of 4µm, the maximal Von Mises stress in the InSb chip increases slowly. Besides, when the height of indium bump increases from 8μm to 24μm in step of 8μm, the maximal Von Mises stress in the InSb chip reduces from 1200MPa to 1030MPa. Von Mises stress of Si readout integrated circuits is also much smaller than that of InSb chip.


2010 ◽  
Vol 34-35 ◽  
pp. 212-216 ◽  
Author(s):  
Qing Duan Meng ◽  
Xiao Ling Zhang ◽  
Xiao Lei Zhang ◽  
Wei Guo Sun

Two-step method is used to research stress and its distribution in 64×64 InSb infrared focal plane array (IRFPA) employing finite element method. First, a small 8×8 InSb IRFPA is systemically studied by varying indium bump diameters, standoff heights and InSb chip thicknesses in suitable range, with indium diameter 30μm, thickness 9μm and InSb thickness 12μm, von Mises stress in InSb chip is the smallest and its distribution is uniform at contacting areas. Then, the sizes of InSb IRFPA is doubled once again from 8×8 to 64×64 to learn the effect from chip sizes, thus, the stress and its distribution of 64×64 InSb IRFPA is obtained in a short time. Simulation results show that von Mises stress maximum in InSb chip almost increases linearly with array scale, yet von Mises stress maximum in Si ROIC decreases slightly with increased array sizes, and the largest von Mises stress is located in InSb chips. Besides, stress distribution on the bottom surface of InSb chip is radiating, and decreases from core to four corners, and stress value at contacting area is smaller than those on its surrounding areas, contrary to stress distribution on top surface of InSb chip.


2014 ◽  
Author(s):  
Zhijin Hou ◽  
Junjie Si ◽  
Wei Wang ◽  
Haizhen Wang ◽  
Liwen Wang

2016 ◽  
Vol 76 ◽  
pp. 631-635 ◽  
Author(s):  
Xiaoling Zhang ◽  
Chao Meng ◽  
Wei Zhang ◽  
Yanqiu Lv ◽  
Junjie Si ◽  
...  

Author(s):  
Vinod Bandela ◽  
Ram Basany ◽  
Anil Kumar Nagarajappa ◽  
Sakeenabi Basha ◽  
Saraswathi Kanaparthi ◽  
...  

Purpose: To analyze the stress distribution and the direction of force in external hexagonal implant with crown in three different angulations. Materials and Methods: A total of 60 samples of geometric models were used to analyze von Mises stress and direction of force with 0-, 5-, and 10-degree lingual tilt. Von Mises stress and force distribution were evaluated at nodes of hard bone, and finite element analysis was performed using ANSYS 12.1 software. For calculating stress distribution and force, we categorized and labeled the groups as Implant A1, Implant A2, and Implant A3, and Implant B1, Implant B2, and Implant B3 with 0-, 5-, and 10-degree lingual inclinations, respectively. Inter- and intra-group comparisons were performed using ANOVA test. A p-value of ≤0.05 was considered statistically significant. Results: In all the three models, overall maximum stress was found in implant model A3 on the implant surface (86.61), and minimum was found on model A1 in hard bone (26.21). In all the three models, the direction of force along three planes was maximum in DX (0.01025) and minimum along DZ (0.002) direction with model B1. Conclusion: Maximum von Mises stress and the direction of force in axial direction was found at the maximum with the implant of 10 degrees angulation. Thus, it was evident that tilting of an implant influences the stress concentration and force in external hex implants.


2021 ◽  
Vol 11 (10) ◽  
pp. 4329
Author(s):  
Victor Roda-Casanova ◽  
Álvaro Zubizarreta-Macho ◽  
Francisco Sanchez-Marin ◽  
Óscar Alonso Ezpeleta ◽  
Alberto Albaladejo Martínez ◽  
...  

Introduction: The finite element method has been extensively used to analyze the mechanical behavior of endodontic rotary files under bending and torsional conditions. This methodology requires elevated computer-aided design skills to reproduce the geometry of the endodontic file, and also mathematical knowledge to perform the finite element analysis. In this study, an automated procedure is proposed for the computerized generation and finite element analysis of endodontic rotary files under bending and torsional conditions. Methods: An endodontic rotary file with a 25mm total length, 0.25mm at the tip, 1.20mm at 16mm from the tip, 2mm pitch and squared cross section was generated using the proposed procedure and submitted for analysis under bending and torsional conditions by clamping the last 3mm of the endodontic rotary file and applying a transverse load of 0.1N and a torsional moment of 0.3N·cm. Results: The results of the finite element analyses showed a maximum von Mises stress of 398MPa resulting from the bending analysis and a maximum von Mises stress of 843MPa resulting from the torsional analysis, both of which are next to the encastre point. Conclusions: The automated procedure allows an accurate description of the geometry of the endodontic file to be obtained based on its design parameters as well as a finite element model of the endodontic file from the previously generated geometry.


Sign in / Sign up

Export Citation Format

Share Document