Thermal Performances in Ribbed Rectangular Convergent and Divergent Channels

2013 ◽  
Vol 479-480 ◽  
pp. 249-253
Author(s):  
M.S. Lee ◽  
S.S. Jeong ◽  
Soo Whan Ahn

The rectangular convergent/divergent channels with one sided ribbed surface only have the inclination angles of 0.72oand1.43o at which the ribbed wall is manufactured with a fixed rib height ( e) =10 mm and the ratio of rib spacing (p) to height ( e) =10. The comparison shows that among the four channels (Dho/Dhi =0.67, 0.86, 1.16, and1.49) the divergent channel of Dho/Dhi =1.49 has the highest thermal performance at the identical mass flow rate, and the divergent channel of Dho/Dhii =1.16 has the highest at the identical pumping power and static pressure drop.

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1231 ◽  
Author(s):  
Alfaryjat ◽  
Miron ◽  
Pop ◽  
Apostol ◽  
Stefanescu ◽  
...  

A modern computer generates a great amount of heat while working. In order to secure appropriate working conditions by extracting the heat, a specific mechanism should be used. This research paper presents the effect of nanofluids on the microchannel heat sink performance of computer cooling systems experimentally. CeO2, Al2O3 and ZrO2 nanoparticles suspended in 20% ethylene glycol and 80% distilled water are used as working fluids in the experiment. The concentration of the nanoparticles ranges from 0.5% to 2%, mass flow rate ranges from 0.028 kg/s to 0.084 kg/s, and the ambient temperature ranges from 25 °C to 40 °C. Regarding the thermal component, parameters such as thermophysical properties of the nanofluids and base fluids, central processing unit (CPU) temperature, heat transfer coefficient, pressure drop, and pumping power have been experimentally investigated. The results show that CeO2-EG/DW, at a concentration of 2% and a mass flow rate of 0.084 kg/s, has with 8% a lower temperature than the other nanofluids and with 29% a higher heat transfer coefficient compared with the base fluid. The Al2O3-EG/DW shows the lowest pressure drop and pumping power, while the CeO2-EG/DW and ZrO2-EG/DW show the highest. However, a slight increase of pumping power and pressure drop can be accepted, considering the high improvement that the nanofluid brings in computer cooling performance compared to the base fluid.


Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


2021 ◽  
Vol 39 (4) ◽  
pp. 1225-1235
Author(s):  
Ajay K. Gupta ◽  
Manoj Kumar ◽  
Ranjit K. Sahoo ◽  
Sunil K. Sarangi

Plate-fin heat exchangers provide a broad range of applications in many cryogenic industries for liquefaction and separation of gasses because of their excellent technical advantages such as high effectiveness, compact size, etc. Correlations are available for the design of a plate-fin heat exchanger, but experimental investigations are few at cryogenic temperature. In the present study, a cryogenic heat exchanger test setup has been designed and fabricated to investigate the performance of plate-fin heat exchanger at cryogenic temperature. Major parameters (Colburn factor, Friction factor, etc.) that affect the performance of plate-fin heat exchangers are provided concisely. The effect of mass flow rate and inlet temperature on the effectiveness and pressure drop of the heat exchanger are investigated. It is observed that with an increase in mass flow rate effectiveness and pressure drop increases. The present setup emphasis the systematic procedure to perform the experiment based on cryogenic operating conditions and represent its uncertainties level.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 487-494 ◽  
Author(s):  
Aminreza Noghrehabadi ◽  
Ebrahim Hajidavaloo ◽  
Mojtaba Moravej ◽  
Ali Esmailinasab

Solar collectors are the key part of solar water heating systems. The most widely produced solar collectors are flat plate solar collectors. In the present study, two types of flat plate collectors, namely square and rhombic collectors are experi?mentally tested and compared and the thermal performance of both collectors is investigated. The results show both collectors have the same performance around noon (?61%), but the rhombic collector has better performance in the morning and afternoon. The values for rhombic and square collectors are approximately 56.2% and 53.5% in the morning and 56.1% and 54% in the afternoon, respectively. The effect of flow rate is also studied. The thermal efficiency of rhombic and square flat plate collectors increases in proportion to the flow rate. The results indicated the rhombic collector had better performance in comparison with the square collector with respect to the mass-flow rate.


2014 ◽  
Vol 592-594 ◽  
pp. 2416-2421
Author(s):  
R.N. Kokila ◽  
S. Rajakumar

The main objective of this paper is to analyze the thermal performance of direct expansion solar assisted heat pump DX-SAHP(A) by numerical simulation in MATLAB and comparing it with the thermal performance of DX-SAHP(B) which has an optimized collector area and mass flow rate. Optimization is performed for high exergy efficiency using Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) optimization technique. The flat plate collector of solar water heater is used as the evaporator with refrigerant (R22).With the optimized value of mass flow rate as 0.055 kg/sec, width as 0.03 m and diameter of riser tubes as 0.021 m the performance of the optimized system has a maximum COP of 6.85 which is greater than the COP of DX-SAHP(A) and the final water temperature of is obtained 100 minutes earlier in the optimized system i.e. DX-SAHP(B) with compressor work less than the system A


2016 ◽  
Vol 836 ◽  
pp. 102-108
Author(s):  
Mirmanto ◽  
Emmy Dyah Sulistyowati ◽  
I Ketut Okariawan

In the rainy season, in tropical countries, to dry stuffs is difficult. Using electrical power or fossil energy is an expensive way. Therefore, it is wise to utilize heat waste. A device that can be used for this purpose is called radiator. The effect of mass flow rate on pressure drop and heat transfer for a dryer room radiator have been experimentally investigated. The room model size was 1000 mm x 1000 mm x 1000 mm made of plywood and the overall radiator dimension was 360 mm x 220 mm x 50 mm made of copper pipes with aluminium fins. Three mass flow rates were investigated namely 12.5 g/s, 14 g/s and 16.5 g/s. The water temperature at the entrance was increased gradually and then kept at 80°C. The maximum temperature reached in the dryer room was 50°C which was at the point just above the radiator. The effect of the mass flow rate on the room temperature was insignificant, while the effect on the pressure drop was significant. Moreover, the pressure drop decreased as the inlet temperature increased. In general, the radiator is recommended to be used as the heat source in a dryer room.


Author(s):  
Prithvi Raj Kokkula ◽  
Shashank Bhojappa ◽  
Selin Arslan ◽  
Badih A. Jawad

Formula SAE is a student competition organized by SAE International. The team of students design, manufacture and race a car. Restrictions are imposed by the Formula SAE rules committee to restrict the air flow into the intake manifold by putting a single restrictor of 20 mm. This rule limits the maximum engine power by reducing the mass flow rate flowing to the engine. The pull is greater at higher rpms and the pressure created inside the cylinder is low. As the diameter of the flow path is reduced, the cross sectional area for flow reduces. For cars running at low rpm when the engine requires less air, the reduction in area is compensated by accelerated flow of air through the restrictor. Since this is for racing purpose cars here are designed to run at very high rpms where the flow at the throat section reach sonic velocities. Due to these restrictions the teams are challenged to come up with improved restrictor designs that allow maximum pressure drop across the restrictor’s inlet and outlet. The design considered for optimizing a flow restrictor is a venturi type having 20 mm restriction between the inlet and the outlet complying with the rules set by Formula SAE committee. The primary objective of this work is to optimize the flow restriction device that achieves maximum mass flow and minimum pull from the engine. This implies the pressure difference created due to the cylinder pressure and the atmospheric pressure at the inlet should be minimum. An optimum flow restrictor is designed by conducting analysis on various converging and diverging angles and coming up with an optimum value. Venturi type is a tubular pipe with varying diameter along its length, through which the fluid flows. Law of governing fluid dynamics states that the “Velocity of the fluid increases as it passes through the constriction to satisfy the principle of continuity”. An equation can be derived from the combination of Bernoulli’s equation and Continuity equation for the pressure drop due to venturi effect. [1]. A Computational Fluid Dynamics (CFD) tool is used to calculate the minimum pressure drop across the restrictor by running a series of analysis on various converging and diverging angles and calculating the pressure drop. As a result, an optimum air flow restrictor is achieved that maximizes the mass flow rate and minimizes the engine pull.


Author(s):  
Mohammad Reza Shirzadi ◽  
Hossein Saeidi

In this article aerodynamic effects of tip clearance on a heavy duty axial turbine are studied. Three different tip clearances are considered for each rotor. For simplicity, a simple tip profile is assumed and cooling air is not modeled. Aerodynamic behavior of all stages is studied in terms of polytropic efficiency, leakage mass flow, secondary and total losses, penetration length, and total mass flow rate for different pressure ratios. Also three well established correlations of tip clearance loss are compared with CFD results to obtain the best model for performance calculation of such a large-scale turbine. The steady states, viscous and compressible flow governing equations representing the flow field with k-epsilon turbulence model are solved using commercial code ANSYS CFX.12. Useful data are presented to predict the variation of efficiency of each individual rotor, as well as entire turbine, as a function of relative tip gap (k/h). This information may be useable in design and troubleshooting. According to the results, even though pressure drop in rear stages across tip gap is lower than pressure drop in front stages, leakage mass flow rate is considerably high for this LP stages. Consequently, tip clearance losses of rear stages have significant effect on the entire turbine efficiency.


Sign in / Sign up

Export Citation Format

Share Document