Driver's Speed Decision-Making Model Based on ANFIS

2014 ◽  
Vol 488-489 ◽  
pp. 955-960 ◽  
Author(s):  
Lian Li ◽  
Song Yang ◽  
Wen Jing Cao

To simulate the driver's ability to deal with uncertainty and solve the unsmooth problem in the driving-status-transformation between free-traveling and car-following during the microscopic traffic simulation, the Adaptive Neuro-Fuzzy Inference System (ANFIS) was introduced to model the driver's speed decision-making behavior which integrated the free-traveling and car-following behavior. The difference between velocity and desired speed was added into the inputs of the ANFIS model besides vehicle speed, relative distance and relative velocity which commonly appeared in car-following models. In this paper, the NGSIM (Next Generation Simulation) data was used to calibrate and evaluate the model. With the analysis and pretreatment of NGSIM data, drivers reaction time was calibrated, drivers were clustered into three categories according to the level of recklessness, and the desired speed of different driver characteristic in different vehicle was approximated as the corresponding free speed. Using the processed NGSIM data, the ANFIS model was trained and the model output was validated and compared with the original data. The results showed that the ANFIS model performed well. In addition, the output of ANFIS model under car-following state was compared with that of GM model. This comparison provided a better chance to analyze the performance of the model and showed that the model simulation the driving data in a more realistic way.

2016 ◽  
Vol 43 (4) ◽  
pp. 361-368 ◽  
Author(s):  
Imran Reza ◽  
Nedal T. Ratrout ◽  
Syed Masiur Rahman

This study investigated the challenges of calibration of the PARAMICS microscopic simulation model for the local traffic conditions in the Kingdom of Saudi Arabia. It proposed an adaptive neuro-fuzzy inference system (ANFIS) based calibration protocol for the PARAMICS model. The developed ANFIS model performs adequately in modeling the queue length as a function of two key calibration parameters, namely mean headway time and mean reaction time. The selected values of the calibration parameters obtained through the ANFIS modeling approach were used as the input parameters for the PARAMICS model. The error indices such as mean absolute errors and mean absolute percentage errors of the developed ANFIS model in predicting the queue lengths varied between 1.11 and 1.24, and between 3.44 and 4.06, respectively. The conformance of the PARAMICS output and the measured queue length indicates the validity of the proposed calibration protocol.


Author(s):  
Rasol Murtadha Najah

This article discusses the application of methods to enhance the knowledge of experts to build a decision-making model based on the processing of physical data on the real state of the environment. Environmental parameters determine its ecological state. To carry out research in the field of expert assessment of environmental conditions, the analysis of known works in this field is carried out. The results of the analysis made it possible to justify the relevance of the application of analytical, stochastic models and models based on methods of enhancing the knowledge of experts — experts. It is concluded that the results of using analytical and stochastic objects are inaccurate, due to the complexity and poor mathematical description of the objects. The relevance of developing information support for an expert assessment of environmental conditions is substantiated. The difference of this article is that based on the analysis of the application of expert methods for assessing the state of the environment, a fuzzy logic adoption model and information support for assessing the environmental state of the environment are proposed. The formalization of the parameters of decision-making models using linguistic and fuzzy variables is considered. The formalization of parameters of decision-making models using linguistic and fuzzy variables was considered. The model’s description of fuzzy inference is given. The use of information support for environment state assessment is shown on the example of experts assessing of the land desertification stage.


2012 ◽  
Vol 482-484 ◽  
pp. 2192-2196
Author(s):  
Yuan Tian ◽  
Zi Ma ◽  
Peng Li

For improving precision of 3D surface measurement equipments, which are playing important role in reverse engineering, the Adaptive Network based Fuzzy Inference System (ANFIS) is developed to reconstruct 3D surface error, and the measurement error of point cloud is compensated by the presented 3D error ANFIS model. The precision of 3D surface measurement equipments has been improved noticeably


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Ye ◽  
Yi Xia ◽  
Zhiming Yao

A common feature that is typical of the patients with neurodegenerative (ND) disease is the impairment of motor function, which can interrupt the pathway from cerebrum to the muscle and thus cause movement disorders. For patients with amyotrophic lateral sclerosis disease (ALS), the impairment is caused by the loss of motor neurons. While for patients with Parkinson’s disease (PD) and Huntington’s disease (HD), it is related to the basal ganglia dysfunction. Previously studies have demonstrated the usage of gait analysis in characterizing the ND patients for the purpose of disease management. However, most studies focus on extracting characteristic features that can differentiate ND gait from normal gait. Few studies have demonstrated the feasibility of modelling the nonlinear gait dynamics in characterizing the ND gait. Therefore, in this study, a novel approach based on an adaptive neuro-fuzzy inference system (ANFIS) is presented for identification of the gait of patients with ND disease. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. Gait dynamics such as stride intervals, stance intervals, and double support intervals were used as the input variables to the model. The particle swarm optimization (PSO) algorithm was utilized to learn the parameters of the ANFIS model. The performance of the system was evaluated in terms of sensitivity, specificity, and accuracy using the leave-one-out cross-validation method. The competitive classification results on a dataset of 13 ALS patients, 15 PD patients, 20 HD patients, and 16 healthy control subjects indicated the effectiveness of our approach in representing the gait characteristics of ND patients.


2013 ◽  
Vol 385-386 ◽  
pp. 1411-1414 ◽  
Author(s):  
Xue Bo Jin ◽  
Jiang Feng Wang ◽  
Hui Yan Zhang ◽  
Li Hong Cao

This paper describes an architecture of ANFIS (adaptive network based fuzzy inference system), to the prediction of chaotic time series, where the goal is to minimize the prediction error. We consider the stock data as the time series. This paper focuses on how the stock data affect the prediction performance. In the experiments we changed the number of data as input of the ANFIS model, the type of membership functions and the desired goal error, thereby increasing the complexity of the training.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2771 ◽  
Author(s):  
Abbas Mardani ◽  
Dalia Streimikiene ◽  
Mehrbakhsh Nilashi ◽  
Daniel Arias Aranda ◽  
Nanthakumar Loganathan ◽  
...  

Understanding the relationships among CO2 emissions, energy consumption, and economic growth helps nations to develop energy sources and formulate energy policies in order to enhance sustainable development. The present research is aimed at developing a novel efficient model for analyzing the relationships amongst the three aforementioned indicators in G20 countries using an adaptive neuro-fuzzy inference system (ANFIS) model in the period from 1962 to 2016. In this regard, the ANFIS model has been used with prediction models using real data to predict CO2 emissions based on two important input indicators, energy consumption and economic growth. This study made use of the fuzzy rules through ANFIS to generalize the relationships of the input and output indicators in order to make a prediction of CO2 emissions. The experimental findings on a real-world dataset of World Development Indicators (WDI) revealed that the proposed model efficiently predicted the CO2 emissions based on energy consumption and economic growth. The direction of the interrelationship is highly important from the economic and energy policy-making perspectives for this international forum, as G20 countries are primarily focused on the governance of the global economy.


CAUCHY ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 10 ◽  
Author(s):  
Venny Riana Riana Agustin ◽  
Wahyu Henky Irawan

Tsukamoto method is one method of fuzzy inference system on fuzzy logic for decision making. Steps of the decision making in this method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules, fuzzy logic analysis, defuzzyfication (affirmation), as well as the conclusion and interpretation of the results. The results from this research are steps of the decision making in Tsukamoto method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules by the general form IF a is A THEN B is B, fuzzy logic analysis to get alpha in every rule, defuzzyfication (affirmation) by weighted average method, as well as the conclusion and interpretation of the results. On customers at the case, in value of 16 the quality of services, the value of 17 the quality of goods, and value of 16 a price, a value of the results is 45,29063 and the level is low satisfaction


2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Anika Nowshin Mowrin ◽  
Md. Hadiuzzaman ◽  
Saurav Barua ◽  
Md. Mizanur Rahman

Commuter train is a viable alternative to road transport to ease the traffic congestion which requires appropriate planning by concerned authorities. The research is aimed to assess passengers’ perception about commuter train service running in areas near Dhaka city. An Adaptive Neuro Fuzzy Inference System (ANFIS) model has been developed to evaluate service quality (SQ) of commuter train. Field survey data has been conducted among 802 respondents who were the regular user of commuter train and 12 attributes have been selected for model development. ANFIS was developed by the training and then tested by 80% and 20% of the total sample respectively. After that, model performance has been evaluated by (i) Confusion Matrix (ii) Root Mean Square Error (RMSE) and attributes are ranked based on their relative importance. The proposed ANFIS model has 61.50% accuracy in training and 47.80% accuracy in testing.  From the results, it is found that 'Bogie condition', 'Cleanliness', ‘Female harassment’, 'Behavior of staff' and 'Toilet facility' are the most significant attributes. This indicates that some necessary measures should be taken immediately to recover the effects of these attributes to improve the SQ of commuter train. 


2020 ◽  
Vol 49 (4) ◽  
pp. 354-373
Author(s):  
Semih Kale

Abstract An accurate estimation of the sea surface temperature (SST) is of great importance. Therefore, the objective of this work was to develop an adaptive neuro-fuzzy inference system (ANFIS) model to predict SST in the Çanakkale Strait. The observed monthly air temperature, evaporation and precipitation data from the Çanakkale meteorological observation station were used as input data. The Takagi–Sugeno fuzzy inference system was applied. The grid partition method (ANFIS-GP) and the subtractive clustering partitioning method (ANFIS-SC) were used with Gaussian membership functions to generate the fuzzy inference system. Six performance evaluation criteria were used to evaluate the developed SST prediction models, including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE) and correlation of determination (R2). The dataset was randomly divided into training and testing datasets for the machine learning process. Training data accounted for 75% of the dataset, while 25% of the dataset was allocated for testing in ANFIS. The hybrid algorithm was selected as a training algorithm for the ANFIS. Simulation results revealed that the ANFIS-SC4 model provided a higher correlation coefficient of 0.96 between the observed and predicted SST values. The results of this study suggest that the developed ANFIS model can be applied for predicting sea surface temperature around the world.


Sign in / Sign up

Export Citation Format

Share Document