Stability Analysis of Fractional Delay Differential Equations by Chebyshev Polynomial

2012 ◽  
Vol 500 ◽  
pp. 586-590
Author(s):  
Xiang Mei Zhang ◽  
Xian Zhou Guo ◽  
Anping Xu

The paper is devoted to the numerical stability of fractional delay differential equations with non-smooth coefficients using the Chebyshev collocation method. In this paper, based on the Grunwald-Letnikov fractional derivatives, we discuss the approximation of fractional differentiation by the Chebyshev polynomial of the first kind. Then we solve the stability of the fractional delay differential equations. Finally, the stability of the delayed Mathieu equation of fractional order is examined for a set of case studies that contain the complexities of periodic coefficients, delays and discontinuities.

Author(s):  
B. Parsa Moghaddam ◽  
Sh. Yaghoobi ◽  
J. A. Tenreiro Machado

This article presents a numerical method based on the Adams–Bashforth–Moulton scheme to solve variable-order fractional delay differential equations (VFDDEs). In these equations, the variable-order (VO) fractional derivatives are described in the Caputo sense. The existence and uniqueness of the solutions are proved under Lipschitz condition. Numerical examples are presented showing the applicability and efficiency of the novel method.


Author(s):  
Waleed M. Abd-Elhameed ◽  
José A. Tenreiro Machado ◽  
Youssri H. Youssri

Abstract This paper presents an explicit formula that approximates the fractional derivatives of Chebyshev polynomials of the first-kind in the Caputo sense. The new expression is given in terms of a terminating hypergeometric function of the type 4 F 3(1). The integer derivatives of Chebyshev polynomials of the first-kind are deduced as a special case of the fractional ones. The formula will be applied for obtaining a spectral solution of a certain type of fractional delay differential equations with the aid of an explicit Chebyshev tau method. The shifted Chebyshev polynomials of the first-kind are selected as basis functions and the spectral tau method is employed for obtaining the desired approximate solutions. The convergence and error analysis are discussed. Numerical results are presented illustrating the efficiency and accuracy of the proposed algorithm.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nasser Hassan Sweilam ◽  
Seham Mahyoub Al-Mekhlafi ◽  
Taghreed Abdul Rahman Assiri

A novel mathematical fractional model of multistrain tuberculosis with time delay memory is presented. The proposed model is governed by a system of fractional delay differential equations, where the fractional derivative is defined in the sense of the Grünwald–Letinkov definition. Modified parameters are introduced to account for the fractional order. The stability of the equilibrium points is investigated for any time delay. Nonstandard finite deference method is proposed to solve the resulting system of fractional-order delay differential equations. Numerical simulations show that nonstandard finite difference method can be applied to solve such fractional delay differential equations simply and effectively.


2012 ◽  
Vol 500 ◽  
pp. 591-595
Author(s):  
Xiang Mei Zhang ◽  
An Ping Xu ◽  
Xian Zhou Guo

The paper deals with the numerical stability analysis of fractional delay differential equations with non-smooth coefficients using the Lagrange collocation method. In this paper, based on the Grunwald-Letnikov fractional derivatives, we discuss the approximation of fractional differentiation by the Lagrange polynomial. Then we study the numerical stability of the fractional delay differential equations. Finally, the stability of the delayed Mathieu equation of fractional order is studied and examined by Lagrange collocation method.


2017 ◽  
Vol 35 (2) ◽  
pp. 49-58 ◽  
Author(s):  
Behrouz Parsa Moghaddam ◽  
Zeynab Salamat Mostaghim

In this paper we present and discuss a new numerical scheme for solving fractional delay differential equations of the generalform:$$D^{\beta}_{*}y(t)=f(t,y(t),y(t-\tau),D^{\alpha}_{*}y(t),D^{\alpha}_{*}y(t-\tau))$$on $a\leq t\leq b$,$0<\alpha\leq1$,$1<\beta\leq2$ and under the following interval and boundary conditions:\\$y(t)=\varphi(t) \qquad\qquad -\tau \leq t \leq a,$\\$y(b)=\gamma$\\where $D^{\beta}_{*}y(t)$,$D^{\alpha}_{*}y(t)$ and $D^{\alpha}_{*}y(t-\tau)$ are the standard Caputo fractional derivatives, $\varphi$ is the initial value and $\gamma$ is a smooth function.\\We also provide this method for solving some scientific models. The obtained results show that the propose method is veryeffective and convenient.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Sign in / Sign up

Export Citation Format

Share Document