Study on the Electromagnetic Shielding Performance of Wool/Stainless Steel Wire Worsted Fabric

2013 ◽  
Vol 821-822 ◽  
pp. 894-900
Author(s):  
Xu Dong Yang ◽  
Xiao Hui Peng ◽  
Hong Hao Xu ◽  
Xiong Yan

Electromagnetic (EM) shielding effectiveness of fifteen woven fabrics which use different yarns as raw materials were evaluated and compared in this paper. Test samples were obtained through the change of yarn structure, the content of stainless steel filaments and process parameters. Fabric electromagnetic shielding effectiveness (SE) was analyzed in terms of the content of stainless steel filaments,fabric density and fabric tightness .The mechanism of electromagnetic shielding of worsted fabric with stainless steel filaments was further studied at different frequencies. The result has certain directive significance on developing high-performance woolen fabrics against electromagnetic radiation.

2018 ◽  
Vol 49 (3) ◽  
pp. 365-382 ◽  
Author(s):  
Jia-Horng Lin ◽  
Ting An Lin ◽  
Ting Ru Lin ◽  
Jia-Ci Jhang ◽  
Ching-Wen Lou

In this study, a composite plain material is composed of woven fabrics containing metal wire with shielding ability and polyester filament that can provide flexibility and far-infrared emissivity. Furthermore, a wrapping process is used to form metal/far-infrared–polyester wrapped yarns, which are then made into metal/far-infrared–polyester woven fabrics. The effects of using stainless steel wire, Cu (copper) wire, or Ni–Cu (nickel-coated copper) wire on the wrapped yarns and woven fabrics are examined in terms of tensile properties, electrical properties, and electromagnetic shielding effectiveness. Moreover, SS+Cu+Ni-Cu woven fabrics have maximum tensile strength, while SS+Ni-Cu woven fabrics have the maximum elongation and SS+Cu+Ni-Cu woven fabrics have the lowest surface resistivity. Stainless steel composite woven fabrics have far-infrared emissivity of 0.89 when they are composed of double layers. electromagnetic shielding effectiveness test results indicate that changing the number of lamination layers and lamination angle has a positive influence on electromagnetic shielding effectiveness of woven fabrics. In particular, SS+Cu+Ni-Cu woven fabrics exhibit electromagnetic shielding effectiveness of −50 dB at a frequency of 2000–3000 MHz when they are laminated with three layers at 90°.


2019 ◽  
Vol 14 ◽  
pp. 155892501986096 ◽  
Author(s):  
Ilkan Özkan ◽  
Abdurrahman Telli

In this study, stainless steel, copper, and silver wires were intermingled with two polyamide 6.6 filaments through the commingling technique to produce three-component hybrid yarns. The produced hybrid yarns were used as weft in the structure of plain woven fabric samples. The electromagnetic shielding effectiveness parameters of samples were measured in the frequency range of 0.8–5.2 GHz by the free space technique. The effects of metal hybrid yarn placement, number of fabric layers, metal types, and wave polarization on the electromagnetic shielding effectiveness and absorption and reflection properties of the woven fabrics were analyzed statistically at low and high frequencies separately. As a result, the samples have no shielding property in the warp direction. Metal types show no statistically significant effect on electromagnetic shielding effectiveness. However, fabrics containing stainless steel have a higher absorption power ratio than copper and silver samples. Double-layer samples have higher electromagnetic shielding effectiveness values than single-layer fabrics in both frequency ranges. However, the number of layers does not have a significant effect on the absorbed and reflected power in the range of 0.8–2.6 GHz. There was a significant difference above 2.6 GHz frequency for absorbed power ratio. An increase in the density of hybrid yarns in the fabric structure leads to an increase in the electromagnetic shielding effectiveness values. Two-metal placement has a higher absorbed power than the full and one-metal placements, respectively. The samples which have double layers and including metal wire were in their all wefts reached the maximum electromagnetic shielding effectiveness values for stainless steel (78.70 dB), copper (72.69 dB), and silver composite (57.50 dB) fabrics.


2019 ◽  
Vol 50 (6) ◽  
pp. 830-846
Author(s):  
Yalan Yang ◽  
Jianping Wang ◽  
Zhe Liu ◽  
Zhujun Wang

Electromagnetic radiation is becoming increasingly serious around our living environment, which seriously endangers people's health and interferes with the operation of electronic equipment. The research and development of anti-electromagnetic radiation fabric have drawn more and more attention. However, the influencing rules and mechanisms of conductive fiber content, fabric tightness, warp–weft density, conductive yarn arrangement, weave type, and electromagnetic wave frequency on fabric electromagnetic shielding effectiveness have not been clarified. Therefore, in this study, a series of fabrics containing stainless steel fibers were produced. Meanwhile, the influencing rules of various factors on electromagnetic shielding effectiveness and the quantitative relationship between some factors and electromagnetic shielding effectiveness were discussed. The results showed that all factors had different degrees of influence on electromagnetic shielding effectiveness, and the relationship between electromagnetic shielding effectiveness and electromagnetic wave frequency could be approximately expressed as: [Formula: see text]. At the same time, the influencing mechanisms of various factors on electromagnetic shielding effectiveness were analyzed in combination with fabric microstructure and macrostructure, the intrinsic parameters of the fabric and the electromagnetic shielding effectiveness mechanism. The results are expected to provide a reference for the establishment of electromagnetic shielding fabric model and enterprise production.


2011 ◽  
Vol 239-242 ◽  
pp. 1994-1997 ◽  
Author(s):  
Ching Wen Lou ◽  
Yi Chang Yang ◽  
Chin Mei Lin ◽  
Ching Wen Lin ◽  
Lin Chao Chen ◽  
...  

Stainless steel (SS) blended yarns with electromagnetic interference (EMI) were made into woven fabrics, after which the fabrics were evaluated with electromagnetic shielding effectiveness (EMSE). Parameters of laminated angle and the lamination number layers affected the fabrics’ EMSE differently. In addition, density of unidirectional SS yarns affected EMSE in frequency range of 200 to 500 MHz , so as the density of cross SS yarns on a frequency over 1000 MHz.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1657 ◽  
Author(s):  
Marek Neruda ◽  
Lukas Vojtech

In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25–50 dB at 0.03–1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.


2014 ◽  
Vol 496-500 ◽  
pp. 472-475
Author(s):  
Ching Wen Lou ◽  
An Pang Chen ◽  
Ting An Lin ◽  
Ya Yuan Chuang ◽  
Jia Horng Lin

In the research, The electromagnetic interferences (EMI) have drastically increased and can disrupt and reduce the life time and the efficiency of devices. Therefore, the electromagnetic shielding problem is become the important issue. In the research, Ni wire and Cu wire (Floodlit Enterprise Co., Ltd.) were used to make the Ni conductive composite yarn and Cu conductive composite yarn via an electrical covering machine. And the Cu conductive composite yarn was fabricated to the woven fabrics with the plain weaving. The test results revealed that the EMSE of the W/K/W complex fabrics have stable EMSE than the W/W/W complex fabrics when the laminated at the same direction. The W/90W/W complex woven fabrics were shown the best EMSE of 46.25 dB, which the test frequency is 1800 MHz.


2009 ◽  
Vol 100 (6) ◽  
pp. 512-524 ◽  
Author(s):  
R. Perumalraj ◽  
B. S. Dasaradan ◽  
R. Anbarasu ◽  
P. Arokiaraj ◽  
S. Leo Harish

Sign in / Sign up

Export Citation Format

Share Document