Adsorption of Methyl Violet Dye from Aqueous Solutions by Activated Carbon Produced from Tamarind Seeds

2014 ◽  
Vol 911 ◽  
pp. 326-330 ◽  
Author(s):  
Piaw Phatai ◽  
Jutharatana Klinkaewnarong ◽  
Surachai Yaiyen

The present work proposes the adsorption of methyl violet (MV) from two solution systems including single MV and binary MV-Cu2+systems by activated carbon (AC) prepared from tamarind seeds in a batch system. Parameters including contact time, solution pH, adsorbent dose, and initial dye concentration were studied. The morphology of the AC was determined by scanning electron microscopy (SEM). The results showed the maximum adsorption of MV dye onto the AC at a contact time of 60 min, solution pH of 9.0 and adsorbent dose of 0.2 and 0.5 g for the single and binary solution systems, respectively. The presence of copper ions in binary solution system decreased the adsorption efficiency of MV dye onto the AC. The equilibrium adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherms.

2013 ◽  
Vol 864-867 ◽  
pp. 710-714
Author(s):  
Piaw Phatai ◽  
Songkot Utara ◽  
Nantana Hatthapanit

The study aimed to investigate the adsorption efficiency of methyl violet (MV) dye on activated carbon (AC) derived from coffee residues. A batch adsorption study was performed to examine various contributory parameters including contact time, solution pH, adsorbent dose and initial dye concentration. The morphology of the AC was studied by means of scanning electron microscopy (SEM). The results showed that maximum adsorption of MV dye on activated carbon occurred with a contact time of 60 min, solution pH of 9.0 and adsorbent dose of 0.3 g. The equilibrium adsorption data were analysed using Freundlich and Temkin isotherms. The adsorption isotherm was found to follow the Freundlich isotherm. Adsorption behavior of MV dye follows mechanism of physical adsorption which is occurred by heterogeneous surface. The results indicate that the AC from coffee residues is a suitable adsorbent for the adsorption of dyes.


Author(s):  
Y. Yerima ◽  
I. Eiroboyi ◽  
I. Eiroboyi

Biomass-based activated carbon has received large attention due to its excellent characteristics such as inexpensiveness, good absorption behaviour, and potential to reduce strong dependence towards non-renewable precursors. The potential use of Palm Kernel Shell in modified activated carbon was evaluated by using the Response Surface Methodology. In this study, a 23 three-level Central Composite Design (CCD) was used to develop a statistical model for the optimization of process variables, contact time (10-130mins) X1, pH (5.0 – 8.0) X2, and adsorbent dose (0.4 -5.0g) X3. The investigation shows that Ethylene Di-Amine Tetra-Acetic Acid modified activated carbon prepared from Palm Kernel Shell is a promising adsorbent for the removal of copper ions from aqueous solutions over a wide range of concentrations with an optimized efficiency of 99% at the solution pH of 7.2, contact time of 70 minutes and adsorbent dose of 2.1g/L. The adsorption results are in line with the linear and quadratic model representation, which is evident from the models for optimization of copper ions.


2020 ◽  
Author(s):  
Gideon Masedi Nii Ayi Lomoko ◽  
Dainius Paliulis

The purpose of the study underlying the present paper was to determine the adsorption of copper ions which happens to be one of the most important toxic heavy metals in the environment; for that purpose a test was carried out under laboratory conditions using wheat bran as adsorbent. The object of the test was to examine the effect of solution pH, contact time, adsorbent dose and initial copper ions concentration (2 mg/L to 20 mg/L) on adsorption yield and uptake. Three masses of wheat bran (0.5 g, 1.0 g and 2.0 g) were used for this experiment. 1.0 g of wheat bran gave a maximum adsorption efficiency at pH 5.0. At this pH, the adsorption efficiency for initial copper ions concentration of 5 mg/L was found to be 65.8% at room temperature for a contact time of 60 min. The adsorption of copper ions slowly reached equilibrium at 30 mins. With an adsorbent dose of 0.5 g of wheat bran, a maximum uptake of 0.277 mg/g of copper ions was recorded. With increasing mass of adsorbent dose from 0.5 g to 2.0 g. the adsorption uptake of copper ions decreased from 0.273 mg/g to 0.087 mg/g The highest removal efficiency of copper ions was found to be at a metal concentration of 5 mg/L. With the metal concentration increasing the adsorption of copper ions by 0.5 g of wheat bran decreased from 52.0% to 39.9%.


2019 ◽  
Author(s):  
Amit Nilabh

In this study we synthesized activated carbon (AC) sourced from peanut shell, an agricultural waste, for the adsorption of methyl blue from its aqueous solution. AC was produced via chemical activation method and was characterized using various tools like XRD, FESEM and Raman spectroscopy. Adsorption experiments were carried in different batches with varying initial concentration, adsorbent dose, contact time, pH and temperature. The optimized parameters for adsorption were found to be that of initial dye concentration of 150 mg/L, adsorbent dose of 120 mg/L, temperature equals to 50C, contact time of 50 minutes and pH equals to 8. Adsorption data were used to figure out isotherm models, kinetics as well as thermodynamics of the process. It was concluded that maximum adsorption capacity is coming to be 714.28 mg/g, and the adsorption is favoring the Tempkin isotherm model. Also it was observed that the process is endothermic and spontaneous in nature.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2011 ◽  
Vol 46 (1) ◽  
pp. 101-104 ◽  
Author(s):  
S Naeem ◽  
U Zafar ◽  
T Amann

In this investigation, adsorption of cyanide has been studied by means of batch-technique. Percentage adsorption was determined for Rice Husk Ash (RHA)-Cyanide solution system as a function of i) contact time, ii) pH, iii) adsorbate concentration and iv) temperature. Adsorption data has been interpreted in terms of Freundlich and Langmuir equations. Thermodynamics parameters for the adsorption system have been determined at three different temperatures. The value of ΔH°=38.326KJ/mole and ΔG°=-6.117KJ/mole at 283°K suggest that the adsorption of cyanide on RHA is an endothermic and a spontaneous process.Key words: Cyanide; Rice husk ash (RHA); Adsorption Isotherms DOI: http://dx.doi.org/10.3329/bjsir.v46i1.3524 Bangladesh J. Sci. Ind. Res. 46(1), 101-104, 2011


2011 ◽  
Vol 8 (4) ◽  
pp. 1512-1521 ◽  
Author(s):  
A. Esmaeili ◽  
P. Beirami ◽  
S. Ghasemi

The batch removal of Ni2+from aqueous solution and wastewater using marine dried (MD) red algaeGracilariaand its activated carbon (AC) was studied. For these experiments, adsorption of Ni2+was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II) uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models


2019 ◽  
Vol 14 (2) ◽  
pp. 276-289 ◽  
Author(s):  
Sina Matavos-Aramyan ◽  
Sadaf Soukhakian

Mesoporous silica was synthesized by a chemical process and its efficiency was investigated for removal of cobalt (Co2+) ions from contaminated water in a laboratory scale. The characteristics of synthesized mesoporous were analyzed by SEM/TGA. Optimal conditions were determined for important parameters such as solution pH, the absorbent dose, the initial Co2+ concentration, and contact time by a single-variable method through the batch experiments. The SEM results confirmed the synthesized silica had high porosity with a honeycomb-like structure. The results showed that with an increasing adsorbent dose and contact time to the optimum, the efficiency of Co2+ adsorption increased. However, with increasing concentration of Co2+, the removal efficiency decreased. At optimal contact time (8 h), 85 % of Co2+ was removed. The maximum adsorption efficiency at pH =7, initial Co2+ concentration of 5 ppm, and at the adsorbent dose 0.3 g/50 ml, was 89%. The study of adsorption isotherm and kinetic models showed that the adsorption process followed the Freundlich isotherm (R2 = 0.9359) and the second-order kinetic model (R2=0.999). Therefore, the synthesized mesoporous silica presented a chemical adsorption mechanism for Co2+ removal from aqueous media and can be utilized in wastewater treatment containing divalent heavy metals such as Co2+.


2020 ◽  
Vol 15 ◽  
pp. 155892502091984
Author(s):  
Moussa Abbas ◽  
Zahia Harrache ◽  
Mohamed Trari

This study investigates the potential use of activated carbon, prepared from pomegranate peels, as an adsorbent activated using H3PO4 and its ability to remove crystal violet from an aqueous solution. The adsorbent was characterized by the Brunauer–Emmett–Teller method (specific surface area: 51.0674 m2 g−1) and point of zero charge (pHPZC = 5.2). However, some examined factors were found to have significant impacts on the adsorption capacity of activated carbon derived from pomegranate peels such as the initial dye concentration (5–15 mg L−1), solution pH (2–14), adsorbent dose (1–8 g L−1), agitation speed (100–700 r/min), and temperature (298–338 K). The best adsorption capacity was found at pH 11 with an adsorbent dose of 1 g L−1, an agitation speed at 400 r/min, and a contact time of 45 min. The adsorption mechanism of crystal violet onto activated carbon derived from pomegranate peels was studied using the pseudo-first-order, pseudo-second-order, Elovich, and Webber–Morris diffusion models. The adsorption kinetics were found to rather follow a pseudo-second order kinetic model with a determination coefficient ( R2) of 0.999. The equilibrium adsorption data for crystal violet adsorbed onto activated carbon derived from pomegranate peels were analyzed by the Langmuir, Freundlich, Elovich, and Temkin models. The results indicate that the Langmuir model provides the best correlation with qmax capacities of 23.26 and 76.92 mg g−1 at 27°C and 32°C, respectively. The adsorption isotherms at different temperatures have been used for the determination of thermodynamic parameters like the free energy, enthalpy, and entropy to predict the nature of adsorption process. The negative values Δ G0 (−5.221 to −1.571 kJ mol−1) and Δ H0 (−86.141 kJ mol−1) indicate that the overall adsorption is spontaneous and exothermic with a physisorption process. The adsorbent derived from pomegranate peels was found to be very effective and suitable for the removal of reactive dyes from aqueous solutions, due to its availability, low-cost preparation, and good adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document