Tribological Aspects in Manufacturing Processes of Microstructured Components and their Tribological Behavior in Operation

2014 ◽  
Vol 966-967 ◽  
pp. 323-335 ◽  
Author(s):  
Tobias Schrader ◽  
Martin Weschta ◽  
Marion Merklein ◽  
Stephan Tremmel ◽  
Ulf Engel ◽  
...  

An ever increasing mobility and a shortage of resources lead to restrictive politically driven limits for fuel consumption as well as an increasing demand of customers for efficient vehicles. Though electrification of cars proceeds, combustion engines will play an important role for conventional and hybrid concepts within next decades. Thus, for a contribution to increasing energy efficiency of vehicles it is vital to trace sources of friction losses and to identify possibilities for friction reduction in combustion engines. Therefore, the follower as a main contributor to friction losses in valve trains was chosen as a demonstrator for friction reduction effects by microstructured components. However, the realization of theoretically advantageous microstructures with filigree geometries is challenging for manufacturing technologies. The present study focuses on the elaboration of a technological basis for a repeatable production of components with microstructured surfaces by a combined cup backward extrusion micro coining process, coping with the demands of large-lot production. For realization of a high accuracy the influence of friction on geometry of microstructured components was investigated. In addition, running-in of components is decisive for final geometry and tribological behavior of microstructured surfaces and hence considered as well.

Author(s):  
A. Higuera-Garrido ◽  
R. Gonza´lez ◽  
M. Cadenas ◽  
J. L. Viesca ◽  
A. Herna´ndez-Battez

The use of texturing as a surface treatment that improves the tribological behavior is widespread in industrial and scientific fields, it is used in internal combustion engines [1], in biomechanical applications [2], in manufacturing processes [3] and in a full range of different applications. When texturing is carried out at low energy levels, the material melts superficially in a process governed by convection and thermocapillarity phenomena [4], whereas at high energy levels the reaction of the material could lead to its sudden vaporization [5] and local melting.


Author(s):  
Camelia Hora ◽  
Stefan Eichenberger

Abstract Due to the development of smaller and denser manufacturing processes most of the hardware localization techniques cannot keep up satisfactorily with the technology trend. There is an increased need in precise and accurate software based diagnosis tools to help identify the fault location. This paper describes the software based fault diagnosis method used within Philips, focusing on the features developed to increase its accuracy.


Author(s):  
Ivan Molnár ◽  
Ladislav Morovič

Abstract The paper discusses the use of 3D digitization and additive manufacturing technologies in the field of medicine. In addition, applications of the use of 3D digitization and additive manufacturing methods are described, focusing on the design and manufacture of individual medical aids. Subsequently, the process of designing and manufacturing of orthopedic aids using these technologies is described and the advantages of introducing the given technologies into the design and manufacturing processes in the medicine sector are presented.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44618-44625 ◽  
Author(s):  
Kang Yang ◽  
Xiaoliang Shi ◽  
Wenzheng Zhai ◽  
Long Chen ◽  
Ao Zhang ◽  
...  

Anti-friction film with friction-reduction and anti-wear properties is formed under elastic deformation at the von Mises stress of 917 MPa (at 12 N).


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Mohamed Kamal Ahmed Ali ◽  
Hou Xianjun

AbstractThe friction between two sliding surfaces is probably one of the oldest problems in mechanics. Frictional losses in any I.C. engine vary between 17% and 19% of the total indicated horse power. The performance of internal combustion engines in terms of frictional power loss, fuel consumption, oil consumption, and harmful exhaust emissions is closely related to the friction force and wear between moving parts of the engine such as piston assembly, valve train, and bearings. To solve this problem, most modern research in the area of Nanotribology (Nanolubricants) aims to improve surface properties, reduce frictional power losses, increase engine efficiency, and reduce consumed fuel and cost of maintenance. Nanolubricants contain different nanoparticles such as Cu, CuO, TiO


2019 ◽  
Vol 9 (14) ◽  
pp. 2787 ◽  
Author(s):  
Chunlian Wang ◽  
Yongchao Yu ◽  
Jiajia Niu ◽  
Yaxuan Liu ◽  
Denzel Bridges ◽  
...  

With the ever-increasing demand for power sources of high energy density and stability for emergent electrical vehicles and portable electronic devices, rechargeable batteries (such as lithium-ion batteries, fuel batteries, and metal–air batteries) have attracted extensive interests. Among the emerging battery technologies, metal–air batteries (MABs) are under intense research and development focus due to their high theoretical energy density and high level of safety. Although significant progress has been achieved in improving battery performance in the past decade, there are still numerous technical challenges to overcome for commercialization. Herein, this mini-review summarizes major issues vital to MABs, including progress on packaging and crucial manufacturing technologies for cathode, anode, and electrolyte. Future trends and prospects of advanced MABs by additive manufacturing and nanoengineering are also discussed.


Author(s):  
Aamer Nazir ◽  
Jeng-Ywan Jeng

The primary concern of the Industry 4.0 is the direct digital manufacturing of customized products on demand at high production speed, high accuracy with functional material property. Although the unique capabilities of existing additive manufacturing technologies make it suitable for direct digital manufacturing, there are numerous limitations which include low printing speed, less accuracy and repeatability, and a limited selection of materials for a particular application. Therefore, a high-speed additive manufacturing approach is proposed in this paper, that is capable of achieving high speed of production, high accuracy, and surface finish, and functional material property. For better understanding, authors describe those additive manufacturing technologies that are capable of achieving the aforementioned characteristics. For validation, samples of various dimensions were 3D printed on a selective laser sintering and a high-speed multijet fusion 3D printer. The results were compared in the context of printing speed, surface roughness (Ra), and hardness of printed parts. Results revealed that the multijet fusion process is significantly faster than its counterpart while sacrificing Ra to some extent but the hardness of printed parts is not changed significantly. The selective laser sintering-printed samples had a 15% lower Ra compared with multijet fusion samples. The results also revealed that the multijet fusion process might be able to print composite/multi-materials; however, more research needs to be done.


Author(s):  
Falko Langbein ◽  
Matthias Loidl ◽  
Alexander Eberhard ◽  
Robert Mergen

Intelligent handling of our limited energy resources and the demand to reduce emissions are today the main drivers for developing efficient combustion engines. Therefore slide bearings and also other parts of the powertrain are facing major challenges caused by: Significantly increased operating pressure, temperature and sliding speed as well as the use of new lubricants and fuels. Furthermore, a ban of hazardous elements (e.g. lead, cadmium) in the applied materials is looming. With respect to above mentioned facts, the mechanical and tribological boundary conditions for bearings in future engines are subjected to change immensely. These changes can only be met by new lining materials and bearing types. From the standpoint of strength, the main critical factors are the soft phases — mainly tin and lead — added to both aluminum and copper based bearing alloys to obtain the necessary tribological behavior. Soft phases are limited in their temperature stability and in addition, lead is an environmental critical element and is restricted. For upcoming engine generations even novel aluminum-tin alloys will reach their performance limits and the classical leaded-bronze material as basis for tri-metal and sputter coatings can no longer cope with the life-time expectations. In addition, corrosion issues will come up due to new oil additives in truck and high speed engines. The present paper proposes, for the application in high speed and truck engines, new slide bearing types with appropriate characteristics and the desired performance required by engine designers: A high strength, thermally stable aluminum alloy with excellent mechanical properties by using re-crystallization inhibition mechanisms; a series of new solutions on the basis of a lead-free bronze linings having brilliant thermo-mechanical process capabilities resulting in high strength properties. Adequate tribological behavior is gained by combination of the new lining alloys with different surface layers. Fundamental working principles, development work and first application results of the new bearing types are presented in relation to existing solutions.


Sign in / Sign up

Export Citation Format

Share Document