Relationship between Precursor Gas Flow Rate with the Structural and Morphology Properties of Diamond like Carbon Films

2014 ◽  
Vol 970 ◽  
pp. 128-131
Author(s):  
Ong Wai Kit ◽  
Karim bin Deraman ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Jackie Chen Keng Yik

Diamond like carbon (DLC) thin films were grown onto glass substrates by using direct current plasma enhance chemical vapour deposition (DC-PECVD) system. Films were deposited under fixed deposition pressure (4 x 10-1 Torr), substrate temperature (500°C) and deposition time (3 hours) but with different flow rate of precursor gas (methane, hydrogen and argon). The fabricated films were characterized by using x-ray diffraction (XRD) and atomic force microscopy (AFM). XRD has revealed that the DLC films were having amorphous phase as the XRD spectrum did not show any obvious sharp peak. From AFM, it was discovered that the precursor gas flow rate has inversely relationship with the grain size and surface roughness of films.

2007 ◽  
Vol 56 (4) ◽  
pp. 2377
Author(s):  
Ma Guo-Jia ◽  
Liu Xi-Liang ◽  
Zhang Hua-Fang ◽  
Wu Hong-Chen ◽  
Peng Li-Ping ◽  
...  

2019 ◽  
Vol 48 (4) ◽  
pp. 416003
Author(s):  
王洪美 WANG Hong-mei ◽  
李玉芳 LI Yu-fang ◽  
沈鸿烈 SHEN Hong-lie ◽  
翟子豪 ZHAI Zi-hao ◽  
陈洁仪 CHEN Jie-yi ◽  
...  

2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


2015 ◽  
Vol 1734 ◽  
Author(s):  
Kento Nakanishi ◽  
Jun Otsuka ◽  
Masanori Hiratsuka ◽  
Chen Chung Du ◽  
Akira Shirakura ◽  
...  

ABSTRACTDiamond-like carbon (DLC) has widespread attention as a new material for its application to thin film solar cells and other semiconducting devices. DLC can be produced at a lower cost than amorphous silicon, which is utilized for solar cells today. However, the electrical properties of DLC are insufficient for this purpose because of many dangling bonds in DLC. To solve this problem, we investigated the effects of the fluorine incorporation on the structural and electrical properties of DLC.We prepared five kinds of fluorinated DLC (F-DLC) thin film with different amounts of fluorine. Films were deposited by the radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. C6H6 and C6HF5 were used as source gases. The total gas flow rate was constant and the gas flow rate ratio R (=C6H6 / (C6H6 + C6HF5)) was changed from 0 to 1 in 0.25 ratio steps. We also prepared nitrogen doped DLC (F-DLC) on p-Si using N2 gas as a doping gas to form nitrogen doped DLC (F-DLC) / p-Si heterojunction diodes.X-ray photoelectron spectroscopy (XPS) showed that fluorine concentration in the DLC films was controlled. Moreover, the XPS analysis of the C1s spectrum at R=2/4 showed the presence of CF bonding. At R=1, CF2 bonding was observed in addition to CF bonding. The sheet resistivity of the films changed from 3.07×1012 to 4.86×109 Ω. The minimum value was obtained at R=2/4. The current-voltage characteristics indicated that nitrogen doped F-DLC of 2/4 and p-Si heterojunction diode exhibited the best rectification characteristics and its energy conversion efficiency had been maximized. This is because of a decrease of dangling bonds density by ESR analysis and an increase of sp2 structures by Raman analysis. When the fluorine is over certain content, the sheet resistivity increases because chain structures become larger, which is due to the CF2 bonding in F-DLC prevents ring structures. Many C2F4 species were observed and it may become precursors of the chain structure domains, such as (CF2)n.In this study, we revealed effects of fluorine incorporation on DLC and succeeded in increasing its conductivity and improving rectification characteristics of DLC/ p-Si hetero-junction diodes. Our results indicate that DLC fluorination is effective for the semiconducting material, such as solar cell applications.


2011 ◽  
Vol 383-390 ◽  
pp. 903-908
Author(s):  
S. Shanmugan ◽  
D. Mutharasu ◽  
Z. Hassan ◽  
H. Abu. Hassan

Al thin films were prepared over different substrates at various process conditions using DC sputtering. The surface topography of all prepared films was examined using AFM technique. Very smooth, uniform and dense surface were observed for Al films coated over Glass substrates. The observed particle size was nano scale (20 -70 nm) for Glass substrates. Sputtering power showed immense effect on surface roughness with respective to Ar gas flow rate. Noticeable change on surface with large particles was observed in Copper substrates at various sputtering power and gas flow rate.


2015 ◽  
Vol 1125 ◽  
pp. 38-44
Author(s):  
Chavin Jongwannasiri ◽  
Shuichi Watanabe

In this article, the results obtained from a study carried out on the plasma post-treatment of diamond-like carbon (DLC) films using an oxygen/tetrafluoromethane (O2/CF4) gas mixture is reported. The surface morphology and chemical bonding of the films before and after the plasma post-treatment were characterized using atomic force microscopy (AFM) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The effect of adding CF4 to the O2 plasma on the wettability of the films was also examined using contact angle measurements. The results indicate that the surface roughness increased with the addition of CF4 to the O2 plasma, whereas oxygen-and fluorinated-based functional groups were generated on the surface of the DLC films submitted to O2/CF4 plasma post-treatment. The surface energy also decreased with increasing CF4 fraction, causing the surface of the films to be hydrophobic. Furthermore, the films containing 20% CF4 exhibited higher hydrophilic stability than the others. Thus, the addition of a small amount of CF4 to O2 plasma can be considered beneficial in improving the hydrophilic stability of surface of DLC films.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yuqi Xue ◽  
Zixin Wang ◽  
Jun Wang ◽  
Changji Hu ◽  
Fangyan Xie ◽  
...  

Modification of hydrogen-free diamond-like carbon (DLC) is presented, with acrylic acid (AA) vapor carried into a vacuum chamber by argon and with the in situ assistance of low-power radio frequency (RF) plasma at a temperature below 100°C. Measured by atomic force microscopy (AFM) technique, the roughness (Ra) of the DLC was 1.063±0.040 nm. XPS and FT-IR spectra analysis showed that carboxyl groups were immobilized on the surface of the DLC films, with about 40% of carboxyl group area coverage. It was found that the RF plasma and reaction time are important in enhancing the modification rate and efficiency.


2015 ◽  
Vol 723 ◽  
pp. 515-519
Author(s):  
Qing Yun Chen ◽  
Kai Min Shih ◽  
Man Yi Duan ◽  
Lie Lin Wang

Diamond-like carbon (DLC) film has remarkable physical, mechanical, biomedical and tribological properties that make it attractive material for numerous industrial applications needs of advanced mechanical systems. In this study, deposition process of DLC films on Si (100) are performed by direct-current (DC) magnetron sputtering method. The effects of interlayer on the compositions, structures and mechanical properties of DLC films are studied. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal the creation of high uniform surface morphology and low roughness DLC films with SiNxinterlayer. For comparison, DLC films with different interlayers are also grown. The Raman spectra are analyzed in order to characterize the film compositions. Indentation test was performed to value the mechanical properties of DLC films. Raman, SEM, and AFM analyses are correlated with the mechanical properties of the DLC films.


Sign in / Sign up

Export Citation Format

Share Document