Technological Assessment in Machining of CuSn10-C Powder Parts

2019 ◽  
Vol 799 ◽  
pp. 116-121
Author(s):  
Viktors Mironovs ◽  
Pavels Stankevics ◽  
Janis Lungevics ◽  
Gunars Lignickis

The main objective of this paper was to investigate machinability and technological assessment of powder metallurgy (PM) parts, especially bushings made by PM process. The bushings are made of CuSn10-C powder. Machining of the PM bushings was performed under various technological parameters, such as a cutting speed, a depth of cut and a feed. The main objective was to achieve or improve surface roughness (Sa – 0.3 to 0.6 μm) of machined bushing. Surface roughness is one of the main parameters, in result of which satisfactory performance of the bushing is achieved. The values of technological parameters were changed starting from the suggested technological parameters by a tool manufacturer and were further modified on step-by-step basis by evaluation of surface roughness of each machined PM bushing. Moreover, for evaluation and characterization of surface roughness not only 2D profile roughness measurements were used, but also 3D surface roughness measurement methodologies were used additionally allowing to investigate correlation between these two types measurement techniques. The results showed that technological assessment might be achieved in several ways not only by one best result.

2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950081 ◽  
Author(s):  
CHUNHUI JI ◽  
SHUANGQIU SUN ◽  
BIN LIN ◽  
TIANYI SUI

This work performed molecular dynamic simulations to study the 2D profile and 3D surface topography in the nanometric cutting process. The least square mean method was used to model the evaluation criteria for the surface roughness at the nanometric scale. The result showed that the cutting speed was the most important factor influencing the spacing between the peaks, the sharpness of the peaks, and the randomness of the profile. The plastic deformation degree of the machined surface at the nanometric scale was significantly influenced by the cutting speed and depth of cut. The 2D and 3D surface roughness parameters exhibited a similar variation tendency, and the parameters Ra and Rq tended to increase gradually with an increase in the cutting speed and a decrease in the depth of cut. Finally, it is concluded that at the nanometric scale, the 3D surface roughness parameters could more accurately reflect the real surface characteristics than the 2D parameters.


2017 ◽  
Vol 261 ◽  
pp. 285-292 ◽  
Author(s):  
Gyula Varga ◽  
János Kundrák

The experimental and theoretic examination of conventional manufacturing procedures continue to be a topic of modern research. It is assisted, to a great extent, by the spread and the possibility of the application of high level software and more accurate measuring equipment. The research results obtained by the use of new equipment can open new ways for further development of conventional manufacturing procedures and their more intensive, more productive application. In this paper, an experimental method is used for examination of the surface features (e.g. flatness, 2D and 3D surface roughness parameters) of face milled aluminium parts. The aim of experiments was to determine the effect of change of the technological parameters (feed rate and cutting speed) on flatness and surface roughness features in of face milling of aluminium parts.


2015 ◽  
Vol 812 ◽  
pp. 71-76
Author(s):  
Richárd Horváth ◽  
Gyula Mátyási ◽  
Ágota Drégelyi-Kiss

The aluminium alloys are used by the automotive, aerospace industries increasingly because of their numerous advantageous mechanical and chemical properties. Surface roughness measurements are essential in characterization of the features of a machined surface. The most widespread aluminium alloy used in cutting is the die-cast type, alloyed with silicon. Industries prefer using two types of such alloys, the so-called eutectic and hypereutectic alloys reinforced with silicon. In this article the cutting capacities of two die-cast aluminium alloys are examined. The cutting experiments were carried out with design of experiment – DOE (the so-called central composite design – CCD). In the course of the examination three factors were altered (cutting speed – vc, m/min; feed – f, mm; depth of cut – a, mm), and the main surface roughness parameters used in the industries were taken as output parameters. The parameters of the manufactured surface roughness and their deviation in case of different workpiece-materials, tool-materials and edge-materials were analysed with statistical methods. Besides minimizing surface roughness, another important criterion of the manufacturing system (machine – tools – chuck – workpiece) is its surface roughness maintaining capacity, which was analyzed with coefficient of variation (CV).


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2017 ◽  
Vol 749 ◽  
pp. 107-110
Author(s):  
Yuta Masu ◽  
Tomohito Fukao ◽  
Taiga Yasuki ◽  
Masahiro Hagino ◽  
Takashi Inoue

The method of imparting ultrasonic vibration to the cutting tool is known to improve the shape accuracy and finished surface roughness. However, a uniform evaluation of this function in drilling has not been achieved, and the cutting process cannot be checked from the outside. The aim of this study is to investigate the cutting characteristics in deep hole drilling when an ultrasonic vibrator on the table of a machining center provides vibration with a frequency of 20 kHz to the work piece. The ultrasonic vibrations in this system reach the maximum amplitude in the center of the work material. We evaluated the change in finished surface roughness between the section where drilling starts to the point of maximum amplitude with ultrasonic vibration. The main cutting conditions are as follows: cutting speed (V) 12.6 (mm/min); feed rate (s) 30, 60 (mm/rev); depth of cut (t) = 32 (mm); work material, tool steel; cutting tool material, HSS; point angle (σ) 118 (°); and drill diameter (φ) 4 (mm). Lubricant powder was also added to clarify the cutting effect, and compared the condition in which there was no ultrasonic vibration. The results showed that surface roughness at the point of maximum amplitude was better than that with no vibration.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


Sign in / Sign up

Export Citation Format

Share Document