Mechanical and Thermal Properties of Harmonic Structured Composites by MM/SPS Process

2021 ◽  
Vol 1016 ◽  
pp. 113-118
Author(s):  
Hiroshi Fujiwara

Harmonic structured composites consist of a low fraction metal region like network and a dispersed another major metal region like island. The harmonic structured composites were produced via mechanical milling (MM) followed by spark plasma sintering (SPS), and its mechanical and thermal properties were investigated in detail. Microstructural observation of the MM powders and SPS compacts was achieved using scanning electron microscopy (SEM). The mechanical properties of the harmonic structured composites were evaluated using results of the Vickers hardness and the tensile tests. The thermal properties of a part of the harmonic structured composites were evaluated using results of thermo-mechanical analysis and laser flash method. High speed steel / mild steel harmonic structured composite exhibited high strength and enough ductility in spite of the trade-off relationship between strength and ductility. In addition, the high speed steel / mild steel harmonic structured composite also demonstrates a superior wear properties and low hardness simultaneously. On the other hand, molybdenum / copper harmonic structured composite demonstrate low coefficient of linear expansion and enough thermal conductivity compared to the conventional copper / molybdenum particle dispersed composite. The coefficient of linear expansion and thermal conductivity are the trade-off relation in this composite. In summary, the harmonic structure control is effective for improvement of the trade-off mechanical and thermal properties in the composite.

Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


2021 ◽  
Vol 320 ◽  
pp. 181-185
Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Irina Shvetsova ◽  
Aleksandrs Korjakins

Because of low calcination temperature, magnesia binders are attributed as low-CO2 emission materials that can benefit the environment by reducing the energy consumption of building sector. Portland cement in different areas of construction can be replaced by magnesia binder which do not require autoclave treatment for hardening, it has low thermal conductivity and high strength properties. Magnesium-based materials are characterized by decorativeness and ecological compatibility.The experimental part of this research is based on the preparation of magnesia binders by adding raw materials and calcinated products and caustic magnesia. The aim of this study was to obtain low-CO2 emission and eco-friendly material using local dolomite waste materials, comparing physical, mechanical, thermal properties of magnesium binders.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


2007 ◽  
Vol 124-126 ◽  
pp. 1079-1082 ◽  
Author(s):  
Sung Ryong Kim ◽  
Dae Hoon Kim ◽  
Dong Ju Kim ◽  
Min Hyung Kim ◽  
Joung Man Park

Thermal properties of PEEK/silicon carbide(SiC) and PEEK/carbon fiber(CF) were investigated from ambient temperature up to 200°C measured by laser flash method. Thermal conductivity was increased from 0.29W/m-K without filler up to 2.4 W/m-K with at 50 volume % SiC and 3.1W/m-K with 40 volume % carbon fiber. Values from Nielsen theory that predicts thermal conductivity of two-phase system were compared to those obtained from experiment.


2018 ◽  
Vol 149 ◽  
pp. 01076
Author(s):  
Guendouz Mohamed ◽  
Boukhelkhal Djamila

Over the past twenty years, the rubber wastes are an important part of municipal solid waste. This work focuses on the recycling of rubber waste, specifically rubber waste of used shoes discharged into the nature and added in the mass of crushed sand concrete with percentage (10%, 20%, 30% and 40%). The physical (workability, fresh density), mechanical (compressive and flexural strength) and thermal (thermal conductivity) of different crushed sand concrete made are analyzed and compared to the respective controls. The use of rubber waste in crushed sand concrete contributes to reduce the bulk density and performance of sand concrete. Nevertheless, the use of rubber aggregate leads to a significant reduction in thermal conductivity, which improves the thermal insulation of crushed sand concrete.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 497
Author(s):  
Zuzanka Trojanová ◽  
Kristýna Halmešová ◽  
Ján Džugan ◽  
Zdeněk Drozd ◽  
Peter Minárik ◽  
...  

An AX52 magnesium alloy (nominal composition Mg-5Al-2Ca in w.%) was submitted to equal channel angular pressing (ECAP) using processing route A; 1–8 passes through the ECAP tool were applied. The thermal conductivity of the ECAP samples was measured using a flash method in the temperature interval from room temperature up to 350 °C. The microstructure and texture of the samples were studied by light and electron microscopy. The severe plastic deformation, realized by the ECAP, influences the thermal properties of the alloy. The possible microstructural parameters determining the thermal conductivity were analyzed. New dislocations, the grain, phase boundaries, and texture of the samples may perceptibly change the thermal properties.


Author(s):  
Gurminder Singh ◽  
Pulak M Pandey

In the present paper, mechanical and thermal properties of rapidly manufactured copper parts were studied. The combination of three-dimensional printing and ultrasonic assisted pressureless sintering was used to fabricate copper parts. First, the ultimate tensile strength and thermal conductivity were compared between ultrasonic assisted and conventional pressureless sintered samples. The homogenously mixing of particles and local heat generation by ultrasonic vibrations promoted the sintering driving process and resulted in better mechanical and thermal properties. Furthermore, response surface methodology was adopted for the comprehensive study of the ultrasonic sintering parameters (sintering temperature, heating rate, and soaking time with ultrasonic vibrations) on ultimate tensile strength and thermal conductivity of the fabricated sample. Analysis of variance was performed to identify the significant factors and interactions. The image processing method was used to identify the surface porosity at different parameter levels to analyse the experimental results. High ultimate tensile strength was obtained at high sintering temperature, long soaking time, and slow heating rate with low surface porosity. After 60 min of soaking time, no significant effect was observed on the thermal conductivity of the fabricated sample. The significant interactions revealed less effect of soaking time at low sintering temperatures for ultimate tensile strength and less effect of heating rate at low sintering temperatures for thermal conductivity. Multi-objective optimization was carried out to identify parameters for maximum ultimate tensile strength and maximum thermal conductivity.


2020 ◽  
Vol 8 (16) ◽  
pp. 5380-5388
Author(s):  
Chao Liu ◽  
Wei Wu ◽  
Dietmar Drummer ◽  
Wanting Shen ◽  
Yi Wang ◽  
...  

The needle-like Al2O3–ZnO nanowire hybrid filler endows polymer composites with high thermal conductivity, mechanical and thermal properties.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102542-102548 ◽  
Author(s):  
Guanglei Wu ◽  
Yiqun Wang ◽  
Kuikui Wang ◽  
Ailing Feng

Modified aluminum nitride particle/polystyrene (AlN/PS) composite was prepared by a powder processing technique.


Sign in / Sign up

Export Citation Format

Share Document