Influence of Elastic Modulus of Matrix on Conductivity of VGCF Dispersed in Plastic Matrix
Pressure-sensitive conductive material is used for various pressure sensors consists of a polymer nanocomposite with carbon nanotubes (VGCF). And the resistance in it were changed by adding applied load. Recently, carbon nanotubes (VGCF) has drawn attention as a function filler that imparts various functions to a resin, including electrical properties. In polycarbonate (PC) composite with VGCF, the resistance decreases with increase in applied load. And increase of the addition amount of VGCF was enhanced the mechanical properties and electronic properties. In addition, this conclusion suggested that strain of PC/VGCF caused reducing the resistance. Therefore, changing matrix is predictably effective on electrical properties in pressure-conductive materials. In the present study, we used various matrix had different elastic modulus. The addition amount of VGCF was 12.5% volume rate. We made silicone/VGCF and polyethylene (PE)/VGCF and polycarbonate (PC)/VGCF by twin screw extruder and injection moldings. To clarify the influence of elastic modulus of matrix on conductivity of VGCF dispersed plastic matrix composites. The experimental results showed that conductive property of pressure-sensitive conductive materials is related to elastic modulus of them.