The Effect of Oxygen Addition on Oxidation Resistance and Cutting Performance of Si3N4 Ceramics

2007 ◽  
Vol 534-536 ◽  
pp. 1089-1092
Author(s):  
Mituyoshi Nagano ◽  
Hideaki Sano ◽  
Shigeya Sakaguchi ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

The effect of oxygen addition on oxidation behavior of the β-Si3N4 ceramics with 5 mass% Y2O3 and 2 or 4 mass% Al2O3 was investigated by performing oxidation tests in air at 1300° to 1400°C and cutting performance tests. These tests were intended to clarify their ware resistance as cutting tools. The results of mass change, SEM observation and composition analysis of the specimens before and after oxidation test showed that as the Al2O3 content in the β-Si3N4 ceramics increased, mass changes resulted higher oxidation during which process pores and cracks formed due to the release of N2 gas. The values of hardness and bending strength of the specimens with relatively small amount of 2 mass% Al2O3, which formed solid solution in the Si3N4 structure [Si6-zAlzOzN8-z (z = 0.1)], showed larger than those of the specimen with 4 mass% Al2O3 (z = 0.2). The specimens group added with Al2O3 of 2 mass% (Z = 0.1) also showed high wear resistance. From this, we could conclude that the mechanical properties of β-Si3N4 ceramics depending on oxygen introduction is much effective on cutting performance improvements of the cutting performance of β-Si3N4 ceramics.

2014 ◽  
Vol 488-489 ◽  
pp. 277-280
Author(s):  
Sha Sha Wei ◽  
Wei Wei ◽  
Ping Shan Lu ◽  
Rong Chuan Lin

TiAlN coated cemented carbide is a new style material and enjoys many advantages such as high wear resistance ,good physical and mechanics performance. Through cutting tests of machining stainless steel S17700, we study the effects of different cutting performance on tool life to get optimum cutting performance when tool life is constant. The study shows that this cutter is a better material in cutting stainless steel.


Author(s):  
Mituyoshi Nagano ◽  
Hideaki Sano ◽  
Shigeya Sakaguchi ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

Author(s):  
Xin Tong ◽  
Yanxiang Ren ◽  
Jianing Shen ◽  
Song Yu

Most of the researches on the properties of micro-textured tools are based on an orthogonal test, while the interaction between micro-textured parameters is ignored. Therefore, this thesis is based on an interaction test to study the cutting performance of cutting tools. According to the chip morphology obtained from the interactive test, the micro texture diameter of 60 μm is obtained when the cutting is stable. It was also found that the synergistic effect of multiple mesoscopic geometric features had a significant influence on cutting performance. By analysis, we found the optimized parameters for the milling tool were D = 60 μm, l = 100 μm, l1 = 150 μm, r = 60 μm. Furthermore, prediction models of the cutting performance were established by univariate linear regression and the validity of these models was verified. Thus, this thesis provides a reference for improving the performance of cutting tools and for achieving efficient and high-quality machining of titanium alloys.


2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2021 ◽  
Vol 40 (1) ◽  
pp. 77-86
Author(s):  
Siwen Tang ◽  
Pengfei Liu ◽  
Zhen Su ◽  
Yu Lei ◽  
Qian Liu ◽  
...  

Abstract Al2O3 nano-scaled coating was prepared on micro-textured YT5 cemented carbide cutting tools by atomic layer deposition ALD. The effect of Al2O3 nano-scaled coating, with and without combined action of texture, on the cutting performance was studied by orthogonal cutting test. The results were compared with micro-textured cutting tool and YT5 cutting tool. They show that the micro-texture and nano-scaled Al2O3 coated on the micro-texture both can reduce the cutting force and friction coefficient of the tool, and the tools with nano-scaled Al2O3 coated on the micro-texture are more efficient. Furthermore, the friction coefficient of the 100 nm Al2O3-coated micro-texture tool is relatively low. When the distance of the micro-pits is 0.15 mm, the friction coefficient is lowest among the four kinds of pit textured nanometer coating tools. The friction coefficient is the lowest when the direction of the groove in strip textured nanometer coating tool is perpendicular to the main cutting edge. The main mechanism of the nanometer Al2O3 on the micro-textured tool to reduction in cutting force and the friction coefficient is discussed. These results show that the developed tools effectively decrease the cutting force and friction coefficient of tool–chip interface.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3633
Author(s):  
Štefan Michna ◽  
Iryna Hren ◽  
Jan Novotný ◽  
Lenka Michnová ◽  
Václav Švorčík

The application of thin monolayers helps to increase the endurance of a cutting tool during the drilling process. One such trendy coating is TiAlN, which guarantees high wear resistance and helps to “smooth out” surface defects. For this reason, a new type of weak TiAlN microlayer with a new composition has been developed and applied using the HIPIMs magnetron sputtering method. The aim of this study was to analyze surface-applied micro coatings, including chemical composition (EDX) and microstructure in the area of the coatings. Microstructural characterization and visualization of the surface structures of the TiAlN layer were performed using atomic force microscopy. To study the surface layer of the coatings, metallographic cross-sectional samples were prepared and monitored using light and electron microscopy methods. The microhardness of the test layer was also determined. Analyses have shown that a 2-to-4-micron thick monolayer has a microhardness of about 2500 HV, which can help increase the life of cutting tools.


Author(s):  
Kotaro Kawai ◽  
Yuki Hirata ◽  
Hiroki Akasaka ◽  
Naoto Ohtake

Abstract Diamond-like carbon (DLC) films have excellent properties such as high hardness, low friction coefficient, high wear resistance, chemical inertness and so on. Because DLC film is considered as an effective coating material to improve their surface properties, this films are used in various applications such as parts for automobiles engines, hard disk surfaces, cutting tools and dies, and so on. DLC films consist of a mixture of sp2 bonded carbon atoms and sp3 bonded carbon atoms. Among them, ta-C film is known as the hardest and strongest film since it mainly consists of sp3 bonded carbon atoms. One of deposition methods to form ta-C is Filtered Cathodic Vacuum Arc (FCVA). The characteristic of this method is that it is possible to remove the droplets and form a high-quality film.. However, even though lots of mechanical components which require ta-C coating have three-dimensionally shapes, it is difficult to coat ta-C film three dimensionally by using FCVA process. At present, researches on 3D deposition of amorphous carbon films on three dimensional components is still insufficient, and investigation reports on the deposition mechanism and characterization of the deposited films are even more limited. In this study, we tried to deposit films on 3D components by the FCVA method and evaluated the microstructure and surface morphologies of films. Although films were coated successfully in the entire surfaces, different properties were showed depending on the location of components. These properties were investigated by Raman spectroscopy and laser microscope.


2017 ◽  
Vol 107 (04) ◽  
pp. 301-305
Author(s):  
E. Prof. Uhlmann ◽  
F. Kaulfersch

Partikelverstärkte Titanmatrix-Verbundwerkstoffe erlauben erhebliche Leistungssteigerungen im Bereich hochtemperaturbeanspruchter Struktur- und Funktionsbauteile. Die durch die Partikelverstärkung gesteigerte Verschleißbeständigkeit, Festigkeit und Härte bedeuten eine große Herausforderung an die spanende Bearbeitung derartiger Hochleistungswerkstoffe. Mittels Zerspanuntersuchungen beim Fräsen konnten unter Variation der Werkzeuggeometrie, der Schneidstoffe und der Prozessstrategie Parameterbeiche identifiziert werden, mit denen die prozesssichere Zerspanung partikelverstärkter Titanmatrix-Verbundwerkstoffe möglich ist.   Particle-reinforced titanium matrix composites ensure significant performance improvements of structural and functional high-temperature components. However, the high wear resistance, toughness and hardness due to particle reinforcement is a major challenge in machining these high performance materials. By conducting milling experiments with a variation of tool geometry, cutting material and process strategy, process parameters could be identified that enable efficient machining of particle-reinforced titanium matrix composites.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 287 ◽  
Author(s):  
Marina Volosova ◽  
Sergey Grigoriev ◽  
Alexander Metel ◽  
Alexander Shein

The main problem with ceramics used in cutting tools is related to the unpredictable failures caused by the brittle fracturing of ceramic inserts, which is critical for the intermittent milling of cyclic loading. A 125-mm-diameter eight-toothed end mill, with a mechanical fastening of ceramic inserts, was used as a cutting tool for milling hardened steel (102Cr6). For the experiments, square inserts of the Al2O3 + SiC ceramic were used and compared with the samples made of Al2O3 + TiC to confirm the obtained results. The samples were coated with diamond-like coating (DLC), TiZrN, and TiCrAlN coatings, and their bending strength and adhesion were investigated. Investigations into the friction coefficient of the samples and operational tests were also carried out. The effect of smoothing the microroughness and surface defects in comparison with uncoated inserts, which are characteristic of the abrasive processing of ceramics, was investigated and analyzed. The process developed by the authors of the coating process allows for the cleaning and activation of the surface of ceramic inserts using high-energy gas atoms. The impact of these particles on the cutting edge of the insert ensures its sharpening and reduces the radius of curvature of its cutting edges.


2019 ◽  
Vol 60 (9) ◽  
pp. 1842-1849 ◽  
Author(s):  
Sota Kawano ◽  
Sengo Kobayashi ◽  
Satoshi Okano

Sign in / Sign up

Export Citation Format

Share Document