Synthesis of PbS Nanocrystals by Heterogeneous Reaction

2014 ◽  
Vol 809-810 ◽  
pp. 26-30
Author(s):  
Rong Liang Zhang ◽  
Shu Zhen Tang

PbS nanocrystals was synthesized by a heterogeneous reaction of hydrogen sulfide gas and lead nitrate solution containing EDTA in ethanol. The influenceof initial molar concentration ratio of EDTA/Pb (NO3)2 (CEDTA/CPb (NO3)2), volume ratio of ethanol/water (Vethanol/VH2O), pH value and flux of H2S on the particle size of PbS were investigated. The structure, morphology, particle size, and particle size distribution ranges of PbS were characterized by XRD, FE-SEM, and laser particle size analyzer, respectively. Increasing CEDTA/CPb (NO3)2, Vethanol/VH2O, and pH value, as well as decreasing the flux of H2S decrease the particle size of PbS. PbS nanocrystals have an average particle size of 69 nm, a narrow size distribution, and a quasi-spherical shape when CEDTA/CPb (NO3)2 is 1, Vethanol/VH2O is 1, pH is 3.5, and the flux of H2S is 20 ml/min.

2007 ◽  
Vol 128 ◽  
pp. 97-100 ◽  
Author(s):  
Stephanie Möller ◽  
Janusz D. Fidelus ◽  
Witold Łojkowski

The aim of the work was to examine the influence of pH, high power ultrasound, surfactant and dopant quantity on the particle size distribution of ZrO2:Pr3+, with praseodymium content varying between 0.05 and 10 %. The nanopowders were obtained via a hydrothermal microwave driven process. To establish if the dopant was located on the surface of the zirconia nanoparticles, the particle size distribution, as a function of pH, was measured to obtain an estimate of the isoelectric point of the samples. All results indicated that the dopant was concentrated on the surface: the measurements of the particle size distribution show that the pH corresponding to maximum average particle size changes towards higher values when the Pr content increases. Measurements of the particle size distribution dependency on the application of high power ultrasound and the addition of the sodium dodecyl sulphate surfactant show that, under certain conditions, there is a better stabilisation of the nanopowders in a dispersion and undesirable agglomeration is hindered.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 266-270 ◽  
Author(s):  
Ebrahim Izadi ◽  
Ali Rasooli ◽  
Abolfazl Akbarzadeh ◽  
Soodabeh Davaran

AbstractThrough the present study, an eco-friendly method was used to synthesize the gold nanoparticles (GNPs) by using the sodium citrate and extract of the soybean seed as reducing the agents at PH 3. X-Ray diffraction (XRD) method was used to evaluate the crystal structure of as-synthesized NPs and it’s revealed that this method leads to well crystallized GNPs. In order to determine the particle size and their distribution, field emission scanning microscopy (FE-SEM) and dynamic light scattering (DLS) were used. The results showed that, the average particle size distribution of synthesized GNPs in solutions containing of the soybean extract and 1% citrate at PH 3 is about 109.6 and 140.9 nm, respectively. Also, we find that the average size of GNPs is 40 and 33 nm from solutions of citrate and soybean extract, respectively. It was concluded that using the extract of soybean seeds as reducing agent can lead to GNPs with small size and narrow size distribution.


2021 ◽  
Vol 12 (2) ◽  
pp. 104-111
Author(s):  
O. G. Sirenko ◽  
◽  
O. M. Lisova ◽  
S. M. Makhno ◽  
G. M. Gunya ◽  
...  

Polymeric construction materials based on epoxy resin, carbon fillers, such as graphene nanoplates (GNP), carbon nanotubes (CNT) and fillers of inorganic nature – perlite, vermiculite, sand with improved electrophysical characteristics have been developed. The electrophysical propertieгs of composites obtained in various ways which differ according to the principle of injecting components have been investigated. GNP were obtained in two ways. Size distribution of GNP obtained by electrochemical method is 50 to 150 nm. The average particle size is up to 100 nm. It occurs that these particles tend to aggregate as it is shown by the method of dynamic light scattering. The GNP obtained by dispersing thermally expanded graphite in water in a rotary homogenizer have a particle size distribution of 400 to 800 nm if very small particles and large aggregates are absent. The second method of obtaining GNP is less energy consuming and requires fewer manufacturing cycles, so it is more cost-effective. Obtaining composites using aqueous suspensions of GNP is environmentally friendly. Due to the hydrophobic properties of its surface the electrical conductivity of the system which uses vermiculite is higher than one of that which uses perlite for composites with CNT and GNP. It has been found that the difference of electrophysical characteristics between two systems which contain the same amount of carbon filler is caused by the nature of the surface of dielectric components – sand. By changing the content of dielectric ingredients can expand the functionality of composites if use them for shielding from electromagnetic fields.


2018 ◽  
Vol 284 ◽  
pp. 158-162
Author(s):  
I.N. Yegorov ◽  
Nikolay Ya. Egorov

The paper experimentally substantiates effectiveness of method of milling particulate ferromagnetic materials in magneto fluidized bed. Comparative results of particle size distributions and structural parameters of strontium hexaferrite SrFe12O19 powder obtained by milling coarse material in beater mill without electromagnetic effect and in same mill with formation of magneto fluidized bed from mill material are presented. The magneto fluidized bed is formed by constant and alternating gradient magnetic fields with induction lines that are mutually perpendicular and parallel to the plane of rotating beaters. It is shown that application of electromagnetic effect to milling coarse material in beater mill allowed to greatly intensify that process, significantly increase powder quality: increase particle size distribution uniformity and decrease average particle size from 1558.50 μm to 0.56 μm after 120 minutes of processing in the mill. X-ray diffraction analysis showed that milling in beater mill in magneto fluidized bed leads to reduction of coherent-scattering region size, increase of lattice microstrain and dislocation density, making powder more active during sintering process.


2020 ◽  
Vol 989 ◽  
pp. 801-805
Author(s):  
Evgeniy V. Ageev ◽  
O.G. Loktionova ◽  
A.Y. Altukhov

The main requirement for powders for additive machines is the spherical shape of the particles. Such particles most compactly fit into a certain volume and provide the “fluidity” of the powder composition in the material supply systems with minimal resistance. Based on the peculiarities of the methods of obtaining spherical powders in order to obtain spherical granules of a regulated grain size, the technology of electroerosive dispersion, which is distinguished by relatively low energy costs and ecological cleanliness of the process, is proposed. The main advantage of the proposed technology is the use of waste as raw materials, which is much cheaper than the pure components used in traditional technologies. In addition, this technology is powder, which allows to obtain powder-alloys. The widespread use of the method of EED for the processing of metal waste into powders for the purpose of their reuse and application in additive technologies is hampered by the lack of complete information in the scientific and technical literature on the influence of the original composition, modes and media on the properties of powders and technologies of practical application. Therefore, the development of technologies for the reuse of EED powders and the evaluation of the effectiveness of their use requires the conduct of comprehensive theoretical and experimental studies. The purpose of this work was to obtain and study additive products from electroerosive cobalt-chromium powders of a specific particle size distribution and to study their microstructure. The granulometry of the obtained powders was determined on a laser analyzer of particle sizes “Analysette 22 NanoTec”. The microstructure of additive samples from cobalt-chromium powders (by transverse polishing) was investigated by optical microscopy on an inverted optical microscope OLYMPUS GX51. On the basis of completed studies, aimed at obtaining and studying additive products from electroerosive cobalt-chrome powders of a specific particle size distribution, and studying their microstructure, it was found that additive samples, obtained from a cobalt-chrome powder with an average particle size of 35,68 microns, have practically no pores.


2019 ◽  
Vol 948 ◽  
pp. 140-145
Author(s):  
Al Dina N. Khoerunisa ◽  
Prihati Sih Nugraheni ◽  
Mohammad Fahrurrozi ◽  
Wiratni Budhijanto

The aqueous dispersion of nanochitosan was prepared by polyelectrolyte complex (PEC) method with various mixing ratios of chitosan and polyanions, i.e., chitosan-glucomannan, chitosan-hyaluronic acid, and chitosan-Arabic gum. The formation of nanochitosan was carried out by adding the polyanion solution dropwise into the acid solution of chitosan. The study aimed to determine the best polyanion among the variations tested in this study, concerning the targeted particle size and the stability of the dispersion over time. Particle size distribution was observed by Particle Size Analyzer (PSA). The result indicated that Arabic gum gave the smallest average particle size, i.e. 192.5 nm, at a chitosan/polyanion mass ratio of 3:1 and pH value of 4.


Author(s):  
Joseph Schwan ◽  
Brandon Wagner ◽  
Minseok Kim ◽  
Lorenzo Mangolini

Abstract The use of silicon nanoparticles for lithium-ion batteries requires a precise control over both their average size and their size distribution. Particles larger than the generally accepted critical size of 150 nm fail during lithiation because of excessive swelling, while very small particles (<10 nm) inevitably lead to a poor first cycle coulombic efficiency because of their excessive specific surface area. Both mechanisms induce irreversible capacity losses and are detrimental to the anode functionality. In this manuscript we describe a novel approach for enhanced growth of nanoparticles to ~20 nm using low-temperature flow-through plasma reactors via pulsing. Pulsing of the RF power leads to a significant increase in the average particle size, all while maintaining the particles well below the critical size for stable operation in a lithium-ion battery anode. A zero-dimensional aerosol plasma model is used to investigate the dynamics of particle agglomeration and growth in the pulsed plasma reactor. The accelerated growth correlates with the shape of the particle size distribution in the afterglow, which is in turn controlled by parameters such as metastable density, gas and electron temperature. The accelerated agglomeration in each afterglow phase is followed by rapid sintering of the agglomerates into single-crystal particles in the following plasma-on phase. This study highlights the potential of non-thermal plasma reactors for the synthesis of functional nanomaterials, while also underscoring the need for better characterization of their fundamental parameters in transient regimes.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Hongxia Qiao ◽  
Zhiqiang Wei ◽  
Hua Yang ◽  
Lin Zhu ◽  
Xiaoyan Yan

NiO nanoparticles with average particle size of 25 nm were successfully prepared by anodic arc plasma method. The composition, morphology, crystal microstructure, specific surface area, infrared spectra, and particle size distribution of product were analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectrum, and Brunauer-Emmett-Teller (BET)N2adsorption. The experiment results show that the NiO nanoparticles are bcc structure with spherical shape and well dispersed, the particle size distribution ranging from 15 to 45 nm with the average particle size is about 25 nm, and the specific surface area is 33 m2/g. The infrared absorption band of NiO nanoparticles shows blue shifts compared with that of bulk NiO.


1996 ◽  
Vol 11 (5) ◽  
pp. 1199-1209 ◽  
Author(s):  
J. M. McHale ◽  
P. C. McIntyre ◽  
K. E. Sickafus ◽  
N. V. Coppa

An aqueous, all nitrate, solution-based preparation of BaTiO3 is reported here. Rapid freezing of a barium and titanyl nitrate solution, followed by low temperature sublimitation of the solvent, yielded a freeze-dried nitrate precursor which was thermally processed to produce BaTiO3. XRD revealed that 10 min at temperatures ≧600 °C resulted in the formation of phase pure nanocrystalline BaTiO3. TEM revealed that the material was uniform and nanocrystalline (10–15 nm). The high surface to volume ratio inherent in these small particles stabilized the cubic phase of BaTiO3 at room temperature. It was also found that the average particle size of the BaTiO3 produced was highly dependent upon calcination temperature and only slightly dependent upon annealing time. This result suggests a means of selection of particle size of the product through judicious choice of calcination temperature. The experimental details of the freeze-dried precursor preparation, thermal processing of the precursor, product formation, and product morphology are discussed.


Sign in / Sign up

Export Citation Format

Share Document