Preparation of SiO2-Na2O-CaO-P2O5 Glass-Ceramic from Waste Materials and Heat Treatment Effects on its Morphology

2016 ◽  
Vol 846 ◽  
pp. 189-192 ◽  
Author(s):  
Nur Fadilah Baharuddin Pallan ◽  
Khamirul Amin Matori ◽  
Mansor Hashim ◽  
Way Foong Lim ◽  
Hock Jin Quah ◽  
...  

Currently, many researchers interested studying waste materials to recycle them or reuse them in new products. From the sustainable perspective development, it is necessary to implement new technologies to help reduce waste and thus minimize the environmental problems associated with disposal. In this study, the preparation of SiO2-Na2O-CaO-P2O5 (SNCP) glass-ceramic is composed of Soda Lime Silicate (SLS), Clam Shell (CS), Na2CO3 and P2O5 in the ratio of 50: 25: 20: 5 respectively. The waste materials that were used for fabricate glass-ceramic are SLS and CS. All the compounds were mixed to fabricate the SNCP glass-ceramic through solid state reaction. The samples were investigated through X-ray diffraction (XRD), field emission microscope (FESEM) and density measurement. The samples were sintered at temperature 550°C, 650°C, 750°C, 850°C until 950°C. The main phase obtained from XRD analysis is Sodium Calcium Silicate, Na2CaSiO4 with cubic crystal system at 550°C. The highest intensity phase of the diffraction peak is (220) and at the angle 33.7°. There was new peak presence at right side of the main phase Na2CaSiO4, which belong to Silicon Phosphate, SiP2O7 at 650°C and 750°C.When heat treatment increased at 850°C - 950°C, the main phase is Combeite, Na4Ca4(Si6O18) at diffraction peak (220) with rhombohedral crystal system which is assigned to high crystallization temperature (Tc). The density of samples increases at 550°C - 750°C and decreases when heat treatment 850°C - 950°C. Sample density decreases at heat treatment 850°C - 950°C due to increases of sample lattice parameter. FESEM analysis showed that the grain size and porosity increased when the heat treatment increased.

2012 ◽  
Vol 6 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Fatma Margha ◽  
Amr Abdelghany

Ternary borate glasses from the system Na2O?CaO?B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crys?talline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM) and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.


2006 ◽  
Vol 309-311 ◽  
pp. 325-328 ◽  
Author(s):  
Gültekin Göller ◽  
Ipek Akin ◽  
A. Kahraman ◽  
Erdem Demirkesen ◽  
M. Urgen

In this study; in-vitro bioactivity characterization of machinable glass-ceramics having 85 wt% sodium mica (NaMg3AlSi3O10F2) and 15 wt% fluoroapatite has been carried out. Two different heat treatment procedures are applied to the machinable glass-ceramics. The first one is nucleation at 610°C for 2 hours and crystallization at 1000°C for 3 hours and the second is nucleation at 610°C for 2 hours and crystallization at 1000°C for 4 hours. It is observed that increasing the crystallization time to 4 hours resulted in the increasing the formation of hydroxyapatite layer on surface. According to the microstructural investigations, the morphology of the precipitated crystals are different. In addition, the speed of the precipitation of hydroxyapatite is higher in glass-ceramic B than A. Thin film XRD analysis supports these results.


2013 ◽  
Vol 1514 ◽  
pp. 151-156
Author(s):  
Darío Pieck ◽  
Lionel Desgranges ◽  
Yves Pontillon ◽  
Pierre Matheron

ABSTRACTIn the present work, we focus on δ-Gd6UO12 phase and its stability under reducing conditions. This later point is interesting regarding reducing environment that could exist in some nuclear storage sites and that could possibly degrade δ–compounds. A polycrystalline δ-Gd6UO12 sample was prepared by sintering cubic-Gd2O3 and UO2 mixed powders under an air atmosphere. The resulting pellets were then characterized and reduced by heat treatment under an Ar with H2 5% atmosphere. XRD analysis of the sample after reduction did not confirm the reduction into Gd6UO11 but a decomposition of the δ-compound. Preliminary characterizations of these decomposition products are presented.


2021 ◽  
Author(s):  
Kh. S. shaaban

Abstract Glasses with the chemical composition of 52B2O3 – 12SiO2- 26Bi2O3 – (10 - x ) TiO2 - xY2O3, : (0 ≤ x ≥ 10 )prepared using the melt-quench method. The goal of this study is to investigate the structural, thermal, and crystallization characteristics of these samples. XRD analysis has explored the nature of the glass system. Molar volume obtained reduced while the density denotes increased in the present system. FTIR analysis revealed that as Y2O3 replaced by TiO2, because of an increasing trend in bridging oxygens (BOs), structural units and interconnection of modifier oxide tetrahedral increment, while non-bridging oxygens (NBOs) reduce. These glasses' thermal stability investigated using DTA. As the concentration of Y2O3 increased, so the thermal parameter values. The glass-ceramic denoted prepared under controlled heat and investigated using XRD & SEM. Ultrasonic velocities and elastic moduli of glass-ceramic samples increase as internal energy increases. The significance of Y2O3 modifier in the glass system signifies proved. Y2O3 is a powerful nucleating agent that can cause crystallization, assisting in the formation of glass-ceramic phases.


2011 ◽  
Vol 46 (17) ◽  
pp. 5822-5829 ◽  
Author(s):  
Z. Shamsudin ◽  
A. Hodzic ◽  
C. Soutis ◽  
R. J. Hand ◽  
S. A. Hayes ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 583-589
Author(s):  
Оksana Savvova ◽  
◽  
Hennadiy Voronov ◽  
Оlena Babich ◽  
Oleksii Fesenko ◽  
...  

Relevance of the development of high-strength glass-ceramic coatings obtained by resource-saving technology for protective elements has been established. Structure formation mechanism in magnesium aluminosilicate glasses during heat treatment has been analyzed. Selection of the system was substantiated, model glasses and glass-ceramic materials on its base have been developed. Patterns of structure regularity and formation of the phase composition of glass-ceramic materials during their ceramization have been investigated. It was established that the presence of crystalline phase of mullite after melting leads to formation of the primary crystals and allows the formation of the fine crystalline structure under conditions of the low-temperature heat treatment at the nucleation stage. Developed high-strength glass ceramic materials can be used as a base in creating protective elements for special-purpose vehicles by energy-saving technology.


2016 ◽  
Vol 704 ◽  
pp. 225-234 ◽  
Author(s):  
Peter Franz ◽  
Aamir Mukhtar ◽  
Warwick Downing ◽  
Graeme Smith ◽  
Ben Jackson

Gas atomized Ti-6Al-4V (Ti64) alloy powder was used to prepare distinct designed geometries with different properties by selective laser melting (SLM). Several heat treatments were investigated to find suitable processing parameters to strengthen (specially to harden) these parts for different applications. The results showed significant differences between tabulated results for heat treated billet Ti64 and SLM produced Ti64 parts, while certain mechanical properties of SLM Ti64 parts could be improved by different heat treatments using different processing parameters. Most heat treatments performed followed the trends of a reduction in tensile strength while improving ductility compared with untreated SLM Ti64 parts.Gas nitriding [GN] (diffusion-based thermo-chemical treatment) has been combined with a selected heat treatment for interstitial hardening. Heat treatment was performed below β-transus temperature using minimum flow of nitrogen gas with a controlled low pressure. The surface of the SLM produced Ti64 parts after gas nitriding showed TiN and Ti2N phases (“compound layer”, XRD analysis) and α (N) – Ti diffusion zones as well as high values of micro-hardness as compared to untreated SLM produced Ti64 parts. The microhardness profiles on cross section of the gas nitrided SLM produced samples gave information about the i) microhardness behaviour of the material, and ii) thickness of the nitrided layer, which was investigated using energy dispersive spectroscopy (EDS) and x-ray elemental analysis. Tensile properties of the gas nitrided Ti64 bars produced by SLM under different conditions were also reported.


2020 ◽  
Vol 861 ◽  
pp. 113-121
Author(s):  
Zhao Jun Jiang ◽  
Jun Wang ◽  
Dong Mei Cao

Nickel base single crystal superalloy is widely used in hot end parts of aeroengine because of its excellent creep, fatigue and oxidation resistance. In the face of strong market demand and the emergence of new technologies and methods, in 2019, nickel-based single crystal superalloys have made remarkable achievements in preparation and heat treatment processes, repair techniques, test methods, characterization methods, theoretical simulation analysis and composition design, which continuously promotes the development of nickel base single crystal superalloy to the direction of high performance and low cost. The present work reviews the progresses from preparation and heat treatment process, repair technology of service alloy structure, service evaluation of alloy, high flux composition design. The progress in the design, preparation and engineering application of superalloy materials will eventually promote the development of a new generation of aeroengine.


2018 ◽  
Vol 57 (1) ◽  
pp. 116-120
Author(s):  
P.S. Shirshnev ◽  
V.L. Ugolkov ◽  
Zh.G. Snezhnaia ◽  
D.I. Panov ◽  
E.V. Shirshneva-Vaschenko ◽  
...  

Abstract The paper presents the investigation of lithium-potassium-alumoborate glasses (0- 25 mol.% Li2O) doped by copper ions. The effect of glass annealing on the Raman scattering patterns is discussed. It is shown that such an annealing results in drastic changes in the Raman scattering patterns for the glass with 10 mol.%of Li2O: the band at 481 cm-1 conventionally attributed to boron-oxygen bonds in metaborate rings disappears, while a set of narrow bands at 1236, 1500, and 1783 cm-1 is observed. We consider one of these bands, 1783 cm-1, as being the identifier of the formed Li(Al7B4O17) nanophase, XRD analysis supported the above suggestion. The effect of newly formed nanophase on the luminescence spectra is discussed.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3735 ◽  
Author(s):  
Natalia Pawlik ◽  
Barbara Szpikowska-Sroka ◽  
Joanna Pisarska ◽  
Tomasz Goryczka ◽  
Wojciech A. Pisarski

Nanocrystalline transparent BaF2:Eu3+ glass-ceramic materials emitting reddish-orange light were fabricated using a low-temperature sol-gel method. Several experimental techniques were used to verify structural transformation from precursor xerogels to sol-gel glass-ceramic materials containing fluoride nanocrystals. Thermal degradation of xerogels was analyzed by thermogravimetric analysis (TG) and differential scanning calorimetry method (DSC). The presence of BaF2 nanocrystals dispersed in sol-gel materials was confirmed by the X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). In order to detect structural changes in silica network during annealing process, the infrared spectroscopy (IR-ATR) was carried out. In particular, luminescence spectra of Eu3+ and their decays were examined in detail. Some spectroscopic parameters of Eu3+ ions in glass-ceramics containing BaF2 nanocrystals were determined and compared to the values obtained for precursor xerogels. It was observed, that the intensities of two main red and orange emission bands corresponding to the 5D0→7F2 electric-dipole transition (ED) and the 5D0→7F1 magnetic-dipole (MD) transition are changed significantly during transformation from xerogels to nanocrystalline BaF2:Eu3+ glass-ceramic materials. The luminescence decay analysis clearly indicates that the measured lifetime 5D0 (Eu3+) considerably enhanced in nanocrystalline BaF2:Eu3+ glass-ceramic materials compared to precursor xerogels. The evident changes in luminescence spectra and their decays suggest the successful migration of Eu3+ ions from amorphous silica network to low-phonon BaF2 nanocrystals.


Sign in / Sign up

Export Citation Format

Share Document