Continuous Cooling Phase Transformation Rule of 20CrMnTi Low-Carbon Alloy Steel

2019 ◽  
Vol 944 ◽  
pp. 303-312
Author(s):  
Li Zhang Li ◽  
He Wei ◽  
Lin Lin Liao ◽  
Yin Li Chen ◽  
Hai Feng Yan ◽  
...  

Gear steel is a ferritic steel. In the rolling process, the ideal structure is ferrite + pearlite, and bainite or martensite is not expected. However, due to the high alloy content, the hardenability is good, and the bainite or martensite structure is very likely to be generated upon cooling after rolling. In this paper, phase transformation rules during continuous cooling of 20CrMnTi with and without deformation were studied to guide the avoidance of the appearance of bainite or martensite in steel. A combined method of dilatometry and metallography was adopted in the experiments, and the dilatometer DIL805A and thermo-simulation Gleeble3500 were used. Both dynamic and static continuous cooling transformation (CCT) diagrams were drawn by using the software Origin. The causes of those changes in starting temperature, finishing temperature, starting time and transformation duration in ferrite-pearlite phase transformation were analyzed, and the change in Vickers hardness of samples with different cooling rate was discussed. The results indicate that with different cooling rate, there are three phase transformation zones: ferrite-pearlite, bainite and martensite. Deformation of austenite accelerates the occurrence of transformation obviously and moves CCT curve to left and up direction. When the cooling rate is lower than 1 °C/s, the phases in samples are mainly ferrite and pearlite, which is the ideal microstructure of experimental steel. As the cooling rate increases, starting temperature of ferrite transformation in steel decreases, starting time reduces, transformation duration gradually decreases, and the Vickers hardness of samples increases. Under the cooling rate of 0.5 °C/s, ferrite transformation in deformed sample starts at 751.67 °C, ferrite-pearlite phase transformation lasts 167.9 s, and Vickers hardness of sample is 183.4 HV.

2014 ◽  
Vol 1035 ◽  
pp. 27-35
Author(s):  
Yu Pei ◽  
Zhe Gao ◽  
Yi Liu ◽  
Shi Qian Zhao ◽  
Chang Yu Xu ◽  
...  

Phase transformation of austenite continuous cooling process in low carbon high strength sheet steel has been researched by DIL805 thermal mechanical simulate. The Austenite continuous cooling transformation (CCT) diagram of steel has been determined by dilatometry and metallography. With the increase of cooling rate, ferritic transformation, perlitic transformation, bainite transformation and martensitic transformation have produced in the organization. Mathematical equations of phase transformation point-cooling rate and phase variable-cooling rate have been established and phase transformation model of high fit degree has been gained by regression calculation. The results show that calculated value and experimental value are nearly similar, so the phase transformation model is feasible.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 939 ◽  
Author(s):  
Yun Zong ◽  
Chun-Ming Liu

In order to provide important guidance for controlling and obtaining the optimal microstructures and mechanical properties of a welded joint, the continuous cooling transformation diagram of a new low-carbon Nb-microalloyed bainite E550 steel in a simulated coarse-grain heat-affected zone (CGHAZ) has been constructed by thermal dilatation method in this paper. The welding thermal simulation experiments were conducted on a Gleeble-3800 thermo-mechanical simulator. The corresponding microstructure was observed by a LEICA DM2700M. The Vickers hardness (HV) and the impact toughness at −40 °C were measured according to the ASTM E384 standard and the ASTM E2298 standard, respectively. The experimental results may indicate that the intermediate temperature phase transformation of the whole bainite can occur in a wide range of cooling rates of 2–20 °C/s. In the scope of cooling rates 2–20 °C/s, the microstructure of the heat-affected zone (HAZ) mainly consists of lath bainite and granular bainite. Moreover, the proportion of lath bainite increased and granular bainite decreased as the cooling rate increasing. There is a spot of lath martensite in the microstructure of HAZ when the cooling rate is above 20 °C/s. The Vickers hardness increases gradually with the increasing of the cooling rate, and the maximum hardness is 323 HV10. When the cooling time from 800 °C to 500 °C (t8/5) is 5–15 s, it presents excellent −40 °C impact toughness (273–286 J) of the CGHAZ beyond the base material (163 J).


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 699
Author(s):  
Xiaojin Liu ◽  
Guo Yuan ◽  
Raja. Devesh Kumar Misra ◽  
Guodong Wang

In this study, the acicular ferrite transformation behavior of a Ti–Ca deoxidized low carbon steel was studied using a high-temperature laser scanning confocal microscopy (HT-LSCM). The in situ observation of the transformation behavior on the sample surface with different cooling rates was achieved by HT-LSCM. The microstructure between the surface and interior of the HT-LSCM sample was compared. The results showed that Ti–Ca oxide particles were effective sites for acicular ferrite (AF) nucleation. The start transformation temperature at grain boundaries and intragranular particles decreased with an increase in cooling rate, but the AF nucleation rate increased and the surface microstructure was more interlocked. The sample surface microstructure obtained at 3 °C/s was dominated by ferrite side plates, while the ferrite nucleating sites transferred from grain boundaries to intragranular particles when the cooling rate was 15 °C/s. Moreover, it was interesting that the microstructure and microhardness of the sample surface and interior were different. The AF dominating microstructure, obtained in the sample interior, was much finer than the sample surface, and the microhardness of the sample surface was much lower than the sample interior. The combined factors led to a coarse size of AF on the sample surface. AF formed at a higher temperature resulted in the coarse size. The available particles for AF nucleation on the sample surface were quite limited, such that hard impingement between AF plates was much weaker than that in the sample interior. In addition, the transformation stress in austenite on the sample surface could be largely released, which contributed to a coarser AF plate size. The coarse grain size, low dislocation concentration and low carbon content led to lower hardness on the sample surface.


2013 ◽  
Vol 652-654 ◽  
pp. 947-951
Author(s):  
Hui Li ◽  
Yun Li Feng ◽  
Da Qiang Cang ◽  
Meng Song

The static continuous cooling transformation (CCT)curves of 3.15 Si-0.036 C-0.21 Mn-0.008 S-0.008 N-0.022 Al are measured on Gleeble-3500 thermal mechanical simulator, the evolution of microstructure and the tendency of hardness are investigated by optical microscope (OM) and hardness tester. The results show that there is no evident change in microstructure which mainly are ferrite and little pearlite under different cooling rates, but the transition temperature of ferrite is gradually reduced with the increase of cooling rate. When the cooling rate is increased from 0.5°C/s to 20°C/s, the ending temperatures of phase transformation are decreased by 118°C, when cooling rate reaches to 10, Widmanstatten ferrite appears. The hardness of the steel turns out gradual upward trend with the increase of cooling rate.


2022 ◽  
Vol 905 ◽  
pp. 83-87
Author(s):  
Lu Lu Feng ◽  
Wei Wen Qiao ◽  
Jian Sun ◽  
De Fa Li ◽  
Ping Ping Li ◽  
...  

The continuous cooling transformation behavior of high-carbon pearlitic steel was studied by employing optical microscopy, scanning electron microscopy, and the Vickers hardness test. The results show that the microstructure of the test steel is composed of proeutectoid cementite and lamellar pearlite in the cooling rate range of 0.05–2 °C/s and lamellar pearlite in the range of 2–5 °C/s. Further, martensite appears at 10 °C/s. With the increase in the cooling rate, the Vickers hardness of the test steel first decreases and then increases. In the industrial production of high-carbon pearlite steel, the formation of proeutectoid cementite at a low cooling rate needs to be avoided, and at the same time, the formation of martensite and other brittle-phase at a high cooling rate needs to be avoided.


2020 ◽  
Vol 304 ◽  
pp. 99-106
Author(s):  
Natalya Koptseva ◽  
Yulia Efimova ◽  
Mikhail Chukin ◽  
Alexander Pesin ◽  
N. Tokareva ◽  
...  

Physical simulation of steel Mn3Ni1CrMo continuous cooling with different speeds from austenitic state was performed using GLEEBLE 3500 complex. The phase transformations are analyzed and the effect of the cooling rate on the structure and hardness is investigated. A continuous cooling transformation diagram of the undercooled austenite decomposition is constructed. It was concluded that it is possible to reduce the hardness of the hot-rolled billet by reducing the cooling rate compared to the existing in the processing at the STELMOR line of PJSC “MMK”, and this will eliminate the heat treatment of welding wire on the hardware processing.


2016 ◽  
Vol 850 ◽  
pp. 916-921
Author(s):  
Pei Pei Xia ◽  
Liu Qing Yang ◽  
Xiao Jiang Guo ◽  
Ye Zheng Li

The microstructural evolution of the high Nb X80 pipeline steel in Continuous Cooling Transformation (CCT) by Gleeble-3500HS thermal mechanical simulation testing system was studied, the corresponding CCT curves were drawn and the influence of some parameters such as deformation and cooling rate on microstructure of high Nb X80 pipeline steel was analyzed. The results show that as cooling rate increased, the phase transformation temperature of high Nb X80 steel decreased, with the microstructure transformation from ferrite-pearlite to acicular ferrite and bainite-ferrite. When cooling rate was between 20°C/s and 30°C/s, the microstructure was comparatively ideal acicular ferrite, thermal deformation accelerates phase transformation notably and made the dynamic CCT curves move upward and the initial temperature of phase transformation increase obviously. Meanwhile the thermal deformation refined acicular ferrite and extended the range of cooling rate accessible to acicular ferrite.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3571
Author(s):  
Mingxue Sun ◽  
Yang Xu ◽  
Tiewei Xu

We studied the effect of Cu addition on the hardness of ultra-low carbon steels heat treated with different cooling rates using thermal simulation techniques. The microstructural evolution, Cu precipitation behaviors, variations of Vickers hardness and nano-hardness are comparatively studied for Cu-free and Cu-bearing steels. The microstructure transforms from ferritic structure to ferritic + bainitic structure as a function of cooling rate for the two steels. Interphase precipitation occurs in association with the formation of ferritic structure at slower cooling rates of 0.05 and 0.2 °C/s. Coarsening of Cu precipitates occurs at 0.05 °C/s, leading to lower precipitation strengthening. As the cooling rate increases to 0.2 °C/s, the interphase and dispersive precipitation strengthening effects are increased by 63.9 and 50.0 MPa, respectively. Cu precipitation is partially constrained at cooling rate of 5 °C/s, resulting in poor nano-hardness and Young’s Modulus. In comparison with Cu-free steel, the peak Vickers hardness, nano-hardness and Young’s Modulus are increased by 56 HV, 0.61 GPa and 55.5 GPa at a cooling rate of 0.2 °C/s, respectively. These values are apparently higher than those of Cu-free steel, indicating that Cu addition in steels can effectively strengthen the matrix.


2020 ◽  
Vol 835 ◽  
pp. 58-67
Author(s):  
Mohammed Ali ◽  
Antti J. Kaijalainen ◽  
Jaakko Hannula ◽  
David Porter ◽  
Jukka I. Kömi

The effect of chromium content and prior hot deformation of the austenite on the continuous cooling transformation (CCT) diagram of a newly developed low-carbon bainitic steel has been studied using dilatometer measurements conducted on a Gleeble 3800 simulator with cooling rates ranging from 2-80 °C/s. After austenitization at 1100 °C, specimens were either cooled without strain or given 0.6 strain at 880 °C prior to dilatometer measurements. The resultant microstructures have been studied using laser scanning confocal microscopy, scanning electron microscopy and macrohardness measurements. CCT and deformation continuous cooling transformation (DCCT) diagrams were constructed based on the dilatation curves, final microstructures and hardness values. Depending on the cooling rate, the microstructures of the investigated steels after cooling from the austenite region consist of one or more of the following microstructural components: lath-like upper bainite, i.e. bainitic ferrite (BF), granular bainite (GB), polygonal ferrite (PF) and pearlite (P). The proportion of BF to GB as well as the hardness of the transformation products decreased with decreasing cooling rate. The cooling rate at which PF starts to appear depends on the steel composition. With both undeformed and deformed austenite, increasing the chromium content led to higher hardenability and refinement of the microstructure, promoting the formation of BF and shifting the ferrite start curve to lower cooling rates. Prior hot deformation shifted the transformation curves to shorter times and higher temperatures and led to a reduction in hardness at the low cooling rates through the promotion of ferrite formation.


Sign in / Sign up

Export Citation Format

Share Document