Preparation and Characterization of Micro-Graphite Filled Poly(Lactic Acid) Composites: Part 1 - Rheological and Thermal Properties

2020 ◽  
Vol 981 ◽  
pp. 138-143
Author(s):  
Esa N. Shohih ◽  
Mujtahid Kaavessina ◽  
Henry A. S. Lomi ◽  
Betha P. Pratiwi ◽  
Sperisa Distantina ◽  
...  

Conductive polymer composites (CPCs) have attracted great attention of researchers due to their enhanced properties such as an adjustable electrical conductivity, good processability, good mechanical and thermal properties, etc. CPCs had many potencies for wider application in electronic devices. Poly (lactic acid) or PLA is one of the interesting polymers used in the developing of these new important materials. PLA properties are comparable to the synthetic petroleum-based polymers such as polyethylene terephthalate (PET), polypropylene (PP), etc. This research focuses on studying the rheological and thermal properties of PLA/micro-graphite as a conductive polymer composite which adjustable its electrical conductivity. In this study, the PLA/micro-graphite was prepared through solvent blending method using chloroform. The micro-graphite composition was varied from 0%, 5%, and 10 % (w/w) with different stirring time (30 and 60 minutes) and then, poured in glass mould. In the melt rheology study, the frequency sweep test showed that the complex viscosity (|η*|) of the bio-composite increased with the micro-graphite loading. The same tendency was also found in thermal property and stability. The melting temperature and thermal degradation were slightly increasing. The crystallinity of PLA was influenced by the presence of micro-graphite. In this solvent blending method, the homogeneous distribution of micro-graphite in the bio-composite required at least 60 minutes (stirred at 650 rpm and 60 °C).

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1893 ◽  
Author(s):  
Přemysl Menčík ◽  
Radek Přikryl ◽  
Ivana Stehnová ◽  
Veronika Melčová ◽  
Soňa Kontárová ◽  
...  

This paper explores the influence of selected commercial plasticizers structure, which are based on esters of citric acid, on mechanical and thermal properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer biodegradable blends. These plasticizers were first tested with respect to their miscibility with Poly(3-hydroxybutyrate)/Poly(lactic acid) (PHB/PLA) blends using a kneading machine. PHB/PLA/plasticizer blends in the weight ratio (wt %) of 60/25/15 were then prepared by single screw and corotating meshing twin screw extruders in the form of filament for further three-dimensional (3D) printing. Mechanical, thermal properties, and shape stability (warping effect) of 3D printed products can be improved just by the addition of appropriate plasticizer to polymeric blend. The goal was to create new types of eco-friendly PHB/PLA/plasticizers blends and to highly improve the poor mechanical properties of neat PHB/PLA blends (with majority of PHB) by adding appropriate plasticizer. Mechanical properties of plasticized blends were then determined by the tensile test of 3D printed test samples (dogbones), as well as filaments. Measured elongation at break rapidly enhanced from 21% for neat non-plasticized PHB/PLA blends (reference) to 328% for best plasticized blends in the form of filament, and from 5% (reference) to 187% for plasticized blends in the form of printed dogbones. The plasticizing effect on blends was confirmed by Modulated Differential Scanning Calorimetry. The study of morphology was performed by the Scanning Electron Microscopy. Significant problem of plasticized blends used to be also plasticizer migration, therefore the diffusion of plasticizers from the blends after 15 days of exposition to 110 °C in the drying oven was investigated as their measured weight loss. Almost all of the used plasticizers showed meaningful positive softening effects, but the diffusion of plasticizers at 110 °C exposition was quite extensive. The determination of the degree of disintegration of selected plasticized blend when exposed to a laboratory-scale composting environment was executed to roughly check the “biodegradability”.


2019 ◽  
Vol 972 ◽  
pp. 172-177
Author(s):  
Sirirat Wacharawichanant ◽  
Patteera Opasakornwong ◽  
Ratchadakorn Poohoi ◽  
Manop Phankokkruad

This work studied the effects of various types of cellulose fibers on the morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) (90/10 w/w) blends. The PLA/PEC blends before and after adding cellulose fibers were prepared by melt blending method in the internal mixer and molded by compression method. The morphological analysis observed that the presence of cellulose in PLA did not change the phase morphology of PLA, and PLA/cellulose composite surfaces were observed the cellulose fibers inserted in PLA matrix and fiber pull-out. The phase morphology of PLA/PEC blends was changed from brittle fracture to ductile fracture behavior and showed the phase separation between PLA and PEC phases. The presence of celluloses did not improve the compatibility between PLA and PEC phases. The tensile stress and strain curves found that the tensile stress of PLA was the highest value. The addition of all celluloses increased Young’s modulus of PLA. The PEC presence increased the tensile strain of PLA over two times when compared with neat PLA and PLA was toughened by PEC. The incorporation of cellulose fibers in PLA/PEC blends could improve Young’s modulus, tensile strength, and stress at break of the blends. The thermal stability showed that the degradation temperatures of all types of cellulose were less than the degradation temperatures of PLA. Thus, the incorporation of cellulose in PLA could not enhance the thermal stability of PLA composites and PLA/PEC composites. The degradation temperature of PEC was the highest value, but it could not improve the thermal stability of PLA. The incorporation of cellulose fibers had no effect on the melting temperature of the PLA blend and composites.


2017 ◽  
Vol 135 (15) ◽  
pp. 46118 ◽  
Author(s):  
Raghu N. ◽  
Amey Kale ◽  
Anand Raj ◽  
Pankaj Aggarwal ◽  
Shakti Chauhan

2021 ◽  
Vol 315 ◽  
pp. 128-133
Author(s):  
Sirirat Wacharawichanant ◽  
Patteera Opasakornwong ◽  
Ratchadakorn Poohoi ◽  
Manop Phankokkruad

This work studied the effects of medium-length fibrous cellulose (MFC) on the morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) (90/10) blends. The morphological analysis of PLA/MFC composites observed MFC fibers inserted in the PLA matrix and MFC appeared agglomeration when added high MFC loading. The phase morphology showed the two-phase separation of PLA/PEC blends. The presence of PEC reduced the agglomeration of MFC fibers in polymer matrix. The tensile stress and strain curves found that the ultimate stress of PLA was the highest value and the addition of MFC increased Young’s modulus of PLA/MFC and PLA/PEC/MFC composites. The PEC presence improved the strain at breaking point of PLA/PEC blends. The thermal properties found that the incorporation of MFC did not improve the thermal stability of PLA/MFC and PLA/PEC/MFC composites due to the PLA had degradation temperature higher than MFC.


Sign in / Sign up

Export Citation Format

Share Document