Applying system modeling to define 2.5 - d and 3 - d packaging roadmaps

2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001983-002007
Author(s):  
Dev Gupta

Though work on 3-d and later 2.5-d packaging has been going on now for over 5 years, we do not yet see large applications in areas other than traditional heterogeneous integration e,g. in camera modules. Adoption of 2.5-d Si interposer technology in 2010-11 to build FPGA modules on a commercial scale had generated much enthusiasm and expectation that floodgates will open for wide use of this technology e,g. in every Smart Phone but that has not yet materialized, giving rise to a shift in attention in Blogs and Conferences from purely digital applications e,g. processor - memory modules to more performance driven and cost insensitive applications e,g. heterogeneous modules for electro - optic I/O in servers etc. Roadmaps for emerging technologies like 3-d stacking or 2.5-d modules are developed taking process maturity into consideration but they must also anticipate major applications. Such applications using a new technology can succeed only if there are overwhelming advantages in performance and system cost that negate increases in module costs. When the author and his team developed electroplated solder bump flip chip technology and their high volume implementation at two of the leading IDMs over 2 decades ago, both performance ( electrical ) and cost modeling were used to short list applications most likely to succeed and limit process development only for those applications. Countless users & providers of flip chip technology since then have benefited from this original work on electroplated solder and pillar bumps as well as build up type organic substrate technologies. A similar theoretical approach is sorely needed in the development of 2.5-d and 3-d technologies to define the most cost - effective configurations and focus development work on only those. In this work we will discuss the Bandwidth and Power consumption ( two of the key drivers for die stacking ) of various 2.5-d and 3-d package configurations and based on simulation results compare them. Key takeaways : 3-d stacking of dice using TSVs may not necessarily produce improved performance compared to less complicated packaging. Expensive interposers with high interconnect density may not even be necessary for most volume applications. Most likely configurations for processor - memory 3-d modules to get good enough bandwidth at lowest cost.

Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000612-000617 ◽  
Author(s):  
Shota Miki ◽  
Takaharu Yamano ◽  
Sumihiro Ichikawa ◽  
Masaki Sanada ◽  
Masato Tanaka

In recent years, products such as smart phones, tablets, and wearable devices, are becoming miniaturized and high performance. 3D-type semiconductor structures are advancing as the demand for high-density assembly increases. We studied a fabrication process using a SoC die and a memory die for 3D-SiP (System in Package) with TSV technology. Our fabrication is comprised of two processes. One is called MEOL (Middle End of Line) for exposing and completing the TSV's in the SoC die, and the other is assembling the SoC and memory dice in a 3D stack. The TSV completion in MEOL was achieved by SoC wafer back-side processing. Because its final thickness will be a thin 50μm (typical), the SoC wafer (300 mm diameter) is temporarily attached face-down onto a carrier-wafer. Careful back-side grinding reveals the “blind vias” and fully opens them into TSV's. A passivation layer is then grown on the back of the wafer. With planarization techniques, the via metal is accessed and TSV pads are built by electro-less plating without photolithography. After the carrier-wafer is de-bonded, the thin wafer is sawed into dice. For assembling the 3D die stack, flip-chip technology by thermo-compression bonding was the method chosen. First, the SoC die with copper pillar bumps is assembled to the conventional organic substrate. Next the micro-bumps on the memory die are bonded to the TSV pads of the SoC die. Finally, the finished assembly is encapsulated and solder balls (BGA) are attached. The 3D-SiP has passed both package-level reliability and board-level reliability testing. These results show we achieved fabricating a 3D-SiP with high interconnect reliability.


Author(s):  
David A. Koester ◽  
James P. Baumhover

The establishment of standard processes has become increasingly important in the growth of MEMS technology. Standard processes enable developers to leverage stable process platforms without the risk, time and costs associated with extensive process development. JDS Uniphase has established multi-user programs in three different process technologies—polysilicon, SOI and metal—that provide easy, cost-effective vehicles for early stage development. These processes also provide low-risk pathways to manufacturing in high volume. This paper discusses these processes and provides additional background on the importance of a quality system in the management of foundry product development. Product reliability testing is discussed in the context of a customer/foundry model.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
J. Ponmozhi ◽  
S. Dhinakaran ◽  
Zsófia Varga-Medveczky ◽  
Katalin Fónagy ◽  
Luca Anna Bors ◽  
...  

There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers’ theranostics and preclinical, experimental toolbox.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001841-001869
Author(s):  
Brian J. Lewis ◽  
Daniel F. Baldwin ◽  
Paul N. Houston ◽  
Le hang La ◽  
Tim Spark

For Designer and Engineers, it is common during the process development cycle for new products to have limitations on the materials that are available for the prototype work. Most SMT devices are readily available in different formats/solder alloys to satisfy most of the needs for passive needs. However, many times IC devices are limited to what is available from the fab or an IC broker. These limitations can mean that die only come in aluminum, wirebond ready I/O metallization or that the silicon wafers already sawn and in single die formats. For applications where advancement in performance or miniaturization is needed, and the benefits of flip chip technology are attractive, then it is not trivial to be able to use these die. In these cases, the process of adding solderable plating technologies to the I/O bond pads is very favorable. The technologies are currently run for wafer lever plating baths, but very little has been done to evaluate single chip plating. Work in plating Ni/Pd onto the ALCAP structure has been performed to evaluate the process and feasibility of processing groups of singulated die with aluminum bond pads. The work to be detailed in this paper will go through the chemistries used in the plating process onto an aluminum bond pad that makes it suitable for flip chip processes. Several bumping structures, such as solder bumping over this plating technology and plating over gold or copper stud bumps, are evaluated. A process for bumping the flip chips is also detailed. The data for shear testing of the 10 variations before and after 500 liquid thermal shock cycles is detailed. Finally, a comprehensive study for assembly of solder bumped flip chips, with the selective plating process, will be detailed as well as a detailed analysis of the TC reliability of this assembly approach. It will be shown that selective Ni/Pd plating onto single, ALCAP bare die can allow for these typical wirebond die can be used in a practical approach solder flip chip process and provide reasonable reliability results when compared to a mainstream, wafer processed, solder bumped flip chip die.


Author(s):  
Tal Cohen ◽  
Angela Y. Birkes ◽  
Chien H. Hsiung ◽  
Robert E. Fulton

Abstract In the medical arena, the number of uses for new technology is increasing rapidly. In the last few decades, physicians have been using more computerized tools and are basing their diagnoses on high-tech lab results. While the tools used for diagnoses — such as catscans, MRI’s and the myriad of other high-tech equipment — have improved greatly over the years, the method of storing these results into a medical record has not changed much. In fact, the medical system is using antiquated methods of paper-based record, and this results in inefficiency. The record-keeping system simply does not allow for the hightech equipment to be used to their greatest potential. Medical professionals are confronted with a basic issue: How should they manage the huge amount of different types of information so that they can improve medical treatment and upgrade patient care? The case study presented in this paper deals with the Emory Clinic, located in Atlanta, Georgia, which treats a very high volume of patients. This paper provides a study of the patient care process, development of an initial product data model, characterizes and identifies multimedia datasets and finally presents a screen mockup that reflect some of the datasets.


2019 ◽  
Vol 3 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Madhav Datta

Electronic packaging is the methodology for connecting and interfacing the chip technology with a system and the physical world. The objective of packaging is to ensure that the devices and interconnections are packaged efficiently and reliably. Chip–package interconnection technologies currently used in the semiconductor industry include wire bonding, tape automated bonding and flip-chip solder bump connection. Among these interconnection techniques, the flip-chip bumping technology is commonly used in advanced electronic packages since this interconnection is an area array configuration so that the entire surface of the chip can be covered with bumps for the highest possible input/output (I/O) counts. The present article reviews the manufacturing processes for the fabrication of flip-chip bumps for chip–package interconnection. Various solder bumping technologies used in high-volume production include evaporation, solder paste screening and electroplating. Evaporation process produces highly reliable bumps, but it is extremely expensive and is limited to lead or lead-rich solders. Solder paste screening is cost-effective, but issues related to excessive void formation limits the process to low-end products. On the other hand, electrochemical fabrication of flip-chip bumps is an extremely selective and efficient process, which is extendible to finer pitch, larger wafers and a variety of solder compositions, including lead-free alloys. Electrochemically fabricated copper pillar bumps offer fine pitch capabilities with excellent electromigration performance. Due to these virtues, the copper pillar bumping technology is emerging as a lead-free bumping technology option for high-performance electronic packaging.


2005 ◽  
Vol 127 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Slawomir Rubinsztajn ◽  
Donald Buckley ◽  
John Campbell ◽  
David Esler ◽  
Eric Fiveland ◽  
...  

Flip chip technology is one of the fastest growing segments of electronic packaging with growth being driven by the demands such as cost reduction, increase of input/output density, package size reduction and higher operating speed requirements. Unfortunately, flip chip package design has a significant drawback related to the mismatch of coefficient of thermal expansion (CTE) between the silicon die and the organic substrate, which leads to premature failures of the package. Package reliability can be improved by the application of an underfill. In this paper, we report the development of novel underfill materials utilizing nano-filler technology, which provides a previously unobtainable balance of low CTE and good solder joint formation.


Sign in / Sign up

Export Citation Format

Share Document