Perturbation of the Continuous Spectrum of Systems of Ordinary Differential Operators

1962 ◽  
Vol 14 ◽  
pp. 359-378 ◽  
Author(s):  
John B. Butler

Letbe an ordinary differential operator of order h whose coefficients are (η, η) matrices defined on the interval 0 ≤ x < ∞, hη = n = 2v. Let the operator L0 be formally self adjoint and let v boundary conditions be given at x = 0 such that the eigenvalue problem(1.1)has no non-trivial square integrable solution. This paper deals with the perturbed operator L∈ = L0 + ∈q where ∈ is a real parameter and q(x) is a bounded positive (η, η) matrix operator with piecewise continuous elements 0 ≤ x < ∞. Sufficient conditions involving L0, q are given such that L∈ determines a selfadjoint operator H∈ and such that the spectral measure E∈(Δ′) corresponding to H∈ is an analytic function of ∈, where Δ′ is a subset of a fixed bounded interval Δ = [α, β]. The results include and improve results obtained for scalar differential operators in an earlier paper (3).

1980 ◽  
Vol 32 (5) ◽  
pp. 1045-1057 ◽  
Author(s):  
Patrick J. Browne ◽  
Rodney Nillsen

Throughout this paper we shall use I to denote a given interval, not necessarily bounded, of real numbers and Cn to denote the real valued n times continuously differentiable functions on I and C0 will be abbreviated to C. By a differential operator of order n we shall mean a linear function L:Cn → C of the form1.1where pn(x) ≠ 0 for x ∊ I and pi ∊ Cj 0 ≦ j ≦ n. The function pn is called the leading coefficient of L.It is well known (see, for example, [2, pp. 73-74]) thai a differential operator L of order n uniquely determines both a differential operator L* of order n (the adjoint of L) and a bilinear form [·,·]L (the Lagrange bracket) so that if D denotes differentiation, we have for u, v ∊ Cn,1.2


Author(s):  
Richard C. Gilbert

SynopsisFormulas are determined for the deficiency numbers of a formally symmetric ordinary differential operator with complex coefficients which have asymptotic expansions of a prescribed type on a half-axis. An implication of these formulas is that for any given positive integer there exists a formally symmetric ordinary differential operator whose deficiency numbers differ by that positive integer.


1988 ◽  
Vol 31 (4) ◽  
pp. 432-438
Author(s):  
Allan M. Krall

AbstractThe self-adjoint extensions of the singular differential operator Ly = [(py’)’ + qy]/w, where p < 0, w > 0, q ≧ mw, are characterized under limit-circle conditions. It is shown that as long as the coefficients of certain boundary conditions define points which lie between two lines, the extension they help define has the same lower bound.


Author(s):  
Lu-San Chen ◽  
Cheh-Chih Yeh

SynopsisThis paper studies the equationwhere the differential operator Ln is defined byand a necessary and sufficient condition that all oscillatory solutions of the above equation converge to zero asymptotically is presented. The results obtained extend and improve previous ones of Kusano and Onose, and Singh, even in the usual case wherewhere N is an integer with l≦N≦n–1.


1970 ◽  
Vol 67 (2) ◽  
pp. 277-281 ◽  
Author(s):  
M. S. P. Eastham

Let τ be the formally self-adjoint differential operator denned bywhere the pr(x) are real-valued, , and p0(x) > 0. Then τ determines a real symmetric linear operator T0, given by T0f = τf, whose domain D(T0) consists of those functions f in the complex space L2(0, ∞) which have compact support and 2n continuous derivatives in (0, ∞) and vanish in some right neighbourhood of x = 0 ((7), p. 27–8). Since D(T0) is dense in L2(0, ∞), T0 has a self-adjoint extension T. We denote by μ the least limit point of the spectrum of T. The operator T may not be unique, but all such T have the same essential spectrum ((7), p. 28) and therefore μ does not depend on the choice of T.


Author(s):  
Don B. Hinton ◽  
Roger T. Lewis

Let l be the differential operator of order 2n defined bywhere the coefficients are real continuous functions and pn > 0. The formally self-adjoint operator l determines a minimal closed symmetric linear operator L0 in the Hilbert space L2 (0, ∞) with domain dense in L2 (0, ∞) ((4), § 17). The operator L0 has a self-adjoint extension L which is not unique, but all such L have the same continuous spectrum ((4), § 19·4). We are concerned here with conditions on the pi which will imply that the spectrum of such an L is bounded below and discrete.


2009 ◽  
Vol 104 (1) ◽  
pp. 132 ◽  
Author(s):  
Mihai Mihailescu ◽  
Vicentiu Radulescu

We study the nonlinear eigenvalue problem $-(\mathrm{div} (a(|\nabla u|)\nabla u)=\lambda|u|^{q(x)-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is a bounded open set in ${\mathsf R}^N$ with smooth boundary, $q$ is a continuous function, and $a$ is a nonhomogeneous potential. We establish sufficient conditions on $a$ and $q$ such that the above nonhomogeneous quasilinear problem has continuous families of eigenvalues. The proofs rely on elementary variational arguments. The abstract results of this paper are illustrated by the cases $a(t)=t^{p-2}\log (1+t^r)$ and $a(t)= t^{p-2} [\log (1+t)]^{-1}$.


1976 ◽  
Vol 28 (5) ◽  
pp. 905-914 ◽  
Author(s):  
Robert L. Anderson

For certain classes of singular symmetric differential operators L of order 2n, this paper considers the problem of determining sufficient conditions for L to be of limit point type or of limit circle type. The operator discussed here is defined by


1981 ◽  
Vol 33 (1) ◽  
pp. 229-246 ◽  
Author(s):  
Calvin D. Ahlbrandt ◽  
Don B. Hinton ◽  
Roger T. Lewis

1. Introduction. Let P(x) be an m × m matrix-valued function that is continuous, real, symmetric, and positive definite for all x in an interval J , which will be further specified. Let w(x) be a positive and continuous weight function and define the formally self adjoint operator l bywhere y(x) is assumed to be an m-dimensional vector-valued function. The operator l generates a minimal closed symmetric operator L0 in the Hilbert space ℒm2(J; w) of all complex, m-dimensional vector-valued functions y on J satisfyingwith inner productwhere . All selfadjoint extensions of L0 have the same essential spectrum ([5] or [19]). As a consequence, the discreteness of the spectrum S(L) of one selfadjoint extension L will imply that the spectrum of every selfadjoint extension is entirely discrete.


Author(s):  
Yurii B. Orochko

For an unbounded self-adjoint operator A in a separable Hilbert space ℌ and scalar real-valued functions a(t), q(t), r(t), t ∊ ℝ, consider the differential expressionacting on ℌ-valued functions f(t), t ∊ ℝ, and degenerating at t = 0. Let Sp denotethe corresponding minimal symmetric operator in the Hilbert space (ℝ) of ℌ-valued functions f(t) with ℌ-norm ∥f(t)∥ square integrable on the line. The infiniteness of the deficiency indices of Sp, 1/2 < p < 3/2, is proved under natural restrictions on a(t), r(t), q(t). The conditions implying their equality to 0 for p ≥ 3/2 are given. In the case of a self-adjoint differential operator A acting in ℌ = L2(ℝn), the first of these results implies examples of symmetric degenerate differential operators with infinite deficiency indices in L2(ℝm), m = n + 1.


Sign in / Sign up

Export Citation Format

Share Document