The Double B-Dual Of An Inner Product Module Over a C*-Algebra B

1974 ◽  
Vol 26 (5) ◽  
pp. 1272-1280 ◽  
Author(s):  
William L. Paschke

The principal result of this paper states that if X is a pre-Hilbert B-module over an arbitrary C*-algebra B, then the B-valued inner product on X can be lifted to a B-valued inner product on X″ (the B-dual of the B-dual X′ of X). Appropriate identifications allow us to regard X as a submodule of X″ and the latter in turn as a submodule of X′. In this sense, the inner product on X″ is an extension of that on X. As an example (and application) of this result, we consider the special case in which X is a right ideal of B and give a topological description of X″ when in addition B is commutative.

2012 ◽  
Vol 62 (6) ◽  
Author(s):  
Hans Keller ◽  
Herminia Ochsenius

AbstractOrthomodular Hilbertian spaces are infinite-dimensional inner product spaces (E, 〈·, ·〉) with the rare property that to every orthogonally closed subspace U ⊆ E there is an orthogonal projection from E onto U. These spaces, discovered about 30 years ago, are constructed over certain non-Archimedeanly valued, complete fields and are endowed with a non-Archimedean norm derived from the inner product. In a previous work [KELLER, H. A.—OCHSENIUS, H.: On the Clifford algebra of orthomodular spaces over Krull valued fields. In: Contemp. Math. 508, Amer. Math. Soc., Providence, RI, 2010, pp. 73–87] we described the construction of a new object, called the norm Clifford algebra C̃(E) associated to E. It can be considered a counterpart of the well-established Clifford algebra of a finite dimensional quadratic space. In contrast to the classical case, C̃(E) allows to represent infinite products of reflections by inner automorphisms. It is a significant step towards a better understanding of the group of isometries, which in infinite dimension is complex and hard to grasp.In the present paper we are concerned with the inner structure of these new algebras. We first give a canonical representation of the elements, and we prove that C̃ is always central. Then we focus on an outstanding special case in which C̃ is shown to be a division ring. Moreover, in that special case we completely describe the ideals of the corresponding valuation ring $$\mathcal{A}$$. It turns out, rather unexpectedly, that every left-ideal and every right-ideal of $$\mathcal{A}$$ is in fact bilateral.


1971 ◽  
Vol 23 (3) ◽  
pp. 445-450 ◽  
Author(s):  
L. Terrell Gardner

0. In [3], Fell introduced a topology on Rep (A,H), the collection of all non-null but possibly degenerate *-representations of the C*-algebra A on the Hilbert space H. This topology, which we will call the Fell topology, can be described by giving, as basic open neighbourhoods of π0 ∈ Rep(A, H), sets of the formwhere the ai ∈ A, and the ξj ∈ H(π0), the essential space of π0 [4].A principal result of [3, Theorem 3.1] is that if the Hilbert dimension of H is large enough to admit all irreducible representations of A, then the quotient space Irr(A, H)/∼ can be identified with the spectrum (or “dual“) Â of A, in its hull-kernel topology.


1975 ◽  
Vol 20 (1) ◽  
pp. 115-123
Author(s):  
David J. Smith

In this paper, some methods are developed for obtaining explicitly a basis for the integral closure of a class of coordinate rings of algebraic space curves.The investigation of this problem was motivated by a need for examples of integrally closed rings with specified subrings with a view toward examining questions of unique factorization in them. The principal result, giving the elements to be adjoined to a ring of the form k[x1, …,xn] to obtain its integral closure, is limited to the rather special case of the coordinate ring of a space curve all of whose singularities are normal. But in numerous examples where the curve has nonnormal singularities, the same method, which is essentially a modification of the method of locally quadratic transformations, also gives the integral closure.


2019 ◽  
Vol 52 (1) ◽  
pp. 410-427
Author(s):  
Andrea C. Antunez

AbstractLet 𝒜 be a unital C*-algebra with a faithful state ϕ. We study the geometry of the unit sphere 𝕊ϕ = {x ∈ 𝒜 : ϕ(x*x) = 1} and the projective space ℙϕ = 𝕊ϕ/𝕋. These spaces are shown to be smooth manifolds and homogeneous spaces of the group 𝒰ϕ(𝒜) of isomorphisms acting in 𝒜 which preserve the inner product induced by ϕ, which is a smooth Banach-Lie group. An important role is played by the theory of operators in Banach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric in ℙϕ, and prove the existence of minimal geodesics, both with given initial data, and given endpoints.


2009 ◽  
Vol 86 (2) ◽  
pp. 189-198
Author(s):  
YUAN LI

AbstractFor two given projections p and q in a C*-algebra, we investigate how to express the Drazin inverses of the product pq and the difference p−q, and give applications. As a special case, we obtain the results of [C. Y. Deng, ‘The Drazin inverses of products and differences of orthogonal projections’, J. Math. Anal. Appl.335 (2007) 64–71], with considerably simpler proofs.


2001 ◽  
Vol 89 (1) ◽  
pp. 135 ◽  
Author(s):  
Beatriz Abadie ◽  
Ruy Exel

A method for deforming $C^*$-algebras is introduced, which applies to $C^*$-algebras that can be described as the cross-sectional $C^*$-algebra of a Fell bundle. Several well known examples of non-commutative algebras, usually obtained by deforming commutative ones by various methods, are shown to fit our unified perspective of deformation via Fell bundles. Examples are the non-commutative spheres of Matsumoto, the non-commutative lens spaces of Matsumoto and Tomiyama, and the quantum Heisenberg manifolds of Rieffel. In a special case, in which the deformation arises as a result of an action of $\boldsymbol R^{2d}$, assumed to be periodic in the first $d$ variables, we show that we get a strict deformation quantization.


2020 ◽  
Vol 44 (4) ◽  
pp. 571-579
Author(s):  
T. TEIMOURI-AZADBAKHT ◽  
A. G GHAZANFARI

Let X be a Hilbert C∗-module on C∗-algebra A and p ∈ A. We denote by Dp(A,X) the set of all continuous functions f : A → X, which are Fréchet differentiable on a open neighborhood U of p. Then, we introduce some generalized semi-inner products on Dp(A,X), and using them some Grüss type inequalities in semi-inner product C∗-module Dp(A,X) and Dp(A,Xn) are established.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Bhuwan Prasad Ojha ◽  
Prakash Muni Bajracharya ◽  
Vishnu Narayan Mishra

This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.


2009 ◽  
Vol 51 (2) ◽  
pp. 385-404 ◽  
Author(s):  
MOHAMED EL-GEBEILY ◽  
DONAL O'REGAN

AbstractIn this paper we describe a special class of self-adjoint operators associated with the singular self-adjoint second-order differential expression ℓ. This class is defined by the requirement that the sesquilinear form q(u, v) obtained from ℓ by integration by parts once agrees with the inner product 〈ℓu, v〉. We call this class Type I operators. The Friedrichs Extension is a special case of these operators. A complete characterization of these operators is given, for the various values of the deficiency index, in terms of their domains and the boundary conditions they satisfy (separated or coupled).


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
K. Niazi Asil ◽  
M. Ghasemi Kamalvand

The indefinite inner product defined by J=diagj1,…,jn, jk∈−1,+1, arises frequently in some applications, such as the theory of relativity and the research of the polarized light. This indefinite scalar product is referred to as hyperbolic inner product. In this paper, we introduce three indefinite iterative methods: indefinite Arnoldi’s method, indefinite Lanczos method (ILM), and indefinite full orthogonalization method (IFOM). The indefinite Arnoldi’s method is introduced as a process that constructs a J-orthonormal basis for the nondegenerated Krylov subspace. The ILM method is introduced as a special case of the indefinite Arnoldi’s method for J-Hermitian matrices. IFOM is mentioned as a process for solving linear systems of equations with J-Hermitian coefficient matrices. Finally, by providing numerical examples, the FOM, IFOM, and ILM processes have been compared with each other in terms of the required time for solving linear systems and also from the point of the number of iterations.


Sign in / Sign up

Export Citation Format

Share Document