В работе рассматриваются интервальные линейные включения Cx ⊆ d в полной интервальной арифметике Каухера. Вводится количественная мера выполнения этого включения, названная “резервом включения”, исследуются ее свойства и приложения. Показано, что резерв включения оказывается полезным инструментом при изучении АЕ-решений и кванторных решений интервальных линейных систем уравнений и неравенств. В частности, использование резерва включения помогает при определении положения точки относительно множества решений, при исследовании пустоты множества решений или его внутренности и т.п
In this paper, we consider interval linear inclusions Cx ⊆ d in the Kaucher complete interval arithmetic. These inclusions are important both on their own and because they provide equivalent and useful descriptions for the so-called quantifier solutions and AE-solutions to interval systems of linear algebraic relations of the form Ax σ b , where A is an interval m × n -matrix, x ∈ R , b is an interval m -vector, and σ ∈ {= , ≤ , ≥} . In other words, these are interval systems in which equations and non-strict inequalities can be mixed. Considering the inclusion Cx ⊆ d in the Kaucher complete interval arithmetic allows studing simultaneously and in a uniform way all the different special cases of quantifier solutions and AE-solutions of interval systems of linear relations, as well as using interval analysis methods. A quantitative measure, called the “inclusion reserve”, is introduced to characterize how strong the inclusion Cx ⊆ d is fulfilled. In our work, we investigate its properties and applications. It is shown that the inclusion reserve turns out to be a useful tool in the study of AE-solutions and quantifier solutions of interval linear systems of equations and inequalities. In particular, the use of the inclusion reserve helps to determine the position of a point relative to a solution set, in investigating whether the solution set is empty or not, whether a point is in the interior of the solution set, etc