Finite Projective Planes that Admit a Strongly Irreducible Collineation Group

1985 ◽  
Vol 37 (4) ◽  
pp. 579-611 ◽  
Author(s):  
Chat Yin Ho

This paper studies how coding theory and group theory can be used to produce information about a finite projective plane π and a collineation group G of π.A new proof for Hering's bound on |G| is given in 2.5. Using the idea of coding theory developed in [9], a relation between two rows of the incidence matrix of π with respect to a tactical decomposition is obtained in 2.1. This result yields, among other things, some techniques in calculating |G|, and generalizes a result of Roth [16], [see 2.4 and 2.5].Hering [7] introduced the notion of strong irreducibility of G, that is, G does not leave invariant any point, line, triangle or proper subplane. He showed that if in addition G contains a non-trivial perspectivity, then there is a unique minimal normal subgroup of G. This subgroup is either non-abelian simple or isomorphic to the elementary abelian group Z3 × Z3 of order 9.

1981 ◽  
Vol 4 (2) ◽  
pp. 305-319
Author(s):  
O. Bachmann

Let a finite projective plane be called rankmplane if it admits a collineation groupGof rankm, let it be called strong rankmplane if moreoverGP=G1for some point-line pair(P,1). It is well known that every rank 2 plane is desarguesian (Theorem of Ostrom and Wagner). It is conjectured that the only rank 3 plane is the plane of order 2. By [1] and [7] the only strong rank 3 plane is the plane of order 2. In this paper it is proved that no strong rank 4 plane exists.


10.37236/5510 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Luke Morgan ◽  
Tomasz Popiel

Let $G$ be a collineation group of a thick finite generalised hexagon or generalised octagon $\Gamma$. If $G$ acts primitively on the points of $\Gamma$, then a recent result of Bamberg et al. shows that $G$ must be an almost simple group of Lie type. We show that, furthermore, the minimal normal subgroup $S$ of $G$ cannot be a Suzuki group or a Ree group of type $^2\mathrm{G}_2$, and that if $S$ is a Ree group of type $^2\mathrm{F}_4$, then $\Gamma$ is (up to point-line duality) the classical Ree-Tits generalised octagon.


2021 ◽  
Vol 89 (10) ◽  
pp. 2211-2233 ◽  
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

1967 ◽  
Vol 63 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Judita Cofman

D. R. Hughes stated the following conjecture: If π is a finite projective plane satisfying the condition: (C)π contains a collineation group δ inducing a doubly transitive permutation group δ* on the points of a line g, fixed under δ, then the corresponding affine plane πg is a translation plane.


10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


Author(s):  
Najm A.M. Al-Seraji ◽  
Asraa A. Monshed

In this research we are interested in finding all the different cubic curves over a finite projective plane of order twenty-three, learning which of them is complete or not, constructing the stabilizer groups of the cubics in, studying the properties of these groups, and, finally, introducing the relation between the subject of coding theory and the projective plane of order twenty three.


1976 ◽  
Vol 41 (2) ◽  
pp. 391-404 ◽  
Author(s):  
J. C. E. Dekker

The main purpose of this paper is to show how partial recursive functions and isols can be used to generalize the following three well-known theorems of combinatorial theory.(I) For every finite projective plane Π there is a unique number n such that Π has exactly n2 + n + 1 points and exactly n2 + n + 1 lines.(II) Every finite projective plane of order n can be coordinatized by a finite planar ternary ring of order n. Conversely, every finite planar ternary ring of order n coordinatizes a finite projective plane of order n.(III) There exists a finite projective plane of order n if and only if there exist n − 1 mutually orthogonal Latin squares of order n.


Author(s):  
Mauro Biliotti ◽  
Gabor Korchmaros

AbstractIn this paper we investigate the structure of a collineation group G of a finite projective plane Π of odd order, assuming that G leaves invariant an oval Ω of Π. We show that if G is nonabelian simple, then G ≅ PSL(2, q) for q odd. Several results about the structre and the action of G are also obtained under the assumptions that n ≡ 1 (4) and G is transitive on the points of Ω.


1957 ◽  
Vol 9 ◽  
pp. 378-388 ◽  
Author(s):  
D. R. Hughes

In (7), Veblen and Wedclerburn gave an example of a non-Desarguesian projective plane of order 9; we shall show that this plane is self-dual and can be characterized by a collineation group of order 78, somewhat like the planes associated with difference sets. Furthermore, the technique used in (7) will be generalized and we will construct a new non-Desarguesian plane of order p2n for every positive integer n and every odd prime p.


Sign in / Sign up

Export Citation Format

Share Document